В области внутриклеточной плазматической мембраны соседние гепатоциты соединены между собой при помощи соединительных комплексов."Тесные соединения", которые также называют как Zona occludens, отделяют просвет желчных канальцев от интерцеллюлярного пространства или пространства Дисса, но осуществляют парацеллюлярный поток воды и катионов (напр., ионов натрия) из интерцеллюлярного пространства и пространства Дисса в просвет желчного канальца (рис.34.2).Параллельно с "тесными соединениями" вдоль желчного канальца находятся "промежуточные соединения", которые содержат конрактильные микрофиламенты.Посредством похожих на перистальтику сокращений периканаликулярно расположенных узлов из микрофиламентов в "промежуточных соединениях" выполняются не только проталкивающие эффекты в канальцах, а также механическая сила воздействует на интерцеллюлярную мембрану для клеточных потоков воды и ионов. "Соединения промежутков" представляют собой агрегаты интрамембранных частиц в области интерцеллюлярной плазматической мембраны, которые формируют через интерцеллюлярные промежутки от гепатоцита к гепатоциту небольшие каналы.Эти каналы проходимы для ионов и небольших молекул, и таким образом осуществляют межклеточные коммуникации, что имеет большое значение для координации секреции желчи в гепатоцитах (21).При холестазе, который представляет собой нарушение секреции желчи, повышается проницаемость "тесных соединений", барьерная функция "тесных соединений", которые разъединяют в норме желчь от интерцеллюлярного пространства, в просвете канальца, нарушена.Это выражается в холестазе в обратном токе желчи в пространство Дисса, что клинически проявляется в форме желтухи и выражается, например, в повыше-
- 6 -
нии концентрации желчных кислот в сыворотке.Плазматическая мембрана со структурно и функционально различными доменами окружает цитоплазму гепатоцитов, в которых содержатся многочисленные клеточные органеллы, как митохондрии, эндоплазматический ретикулум, лизосомы, аппарат Гольджи или цитоскелет.
Эндоплазматический ретикулум гепатоцитов, который у взрослых людей на 40% состоит из шероховатого (содержащего рибосомы) и на 60% из гладкого эндоплазматического ретикулума, может быть при болезнях печени поврежден как в структурном, так и в функциональном отношениях.Синтез белков происходит, главным образом, в шероховатом эндоплазматическом ретикулуме перипортальных гепатоцитов зоны 1 легочного ацинуса.Глазкий эндоплазматический ретикулум ответственен за синтез липидов, накопление гликогена, биотрансформацию стероидов, медикаментов и карциногенов, он содержит ферменты биосинтеза холестерина, желчных кислот, а также уридиндифосфат-(УДФ)-глюкуронилтрансферазы, которые, помимо всего прочего, ответственны за конъюгацию медикаментов, билирубина и желчных кислот с глюкуроновой кислотой (57,67).Следовательно, гладкий эндоплазматический ретикулум имеет функцию обезвреживания ядов.При холестазе, несмотря на гипертрофию, возникает гипоактивность гладкого эндоплазматического ретикулума (68).
Лизосомы богаты гидролитическими ферментами.При холестазе наблюдается повышение числа гепатоцитных лизосом, которые могут содержать билирубин, поврежденные цитоплазматические компоненты и другие составные части мембран (21).В случае болезни Вильсона наблюдается накопление меди и при гемохроматозе-железа, в лизосомах.
Аппарат Гольджи находится в многообразных взаимоотношениях с эндоплазматическим ретикулумом и лизосомами, что выражается в концепции GERL-комплекса (Goldi, endoplasmatische Reticulum, Lisosomen)(62).Аппарат Гольджи имеет функцию "переносчика", например, в секреции альбумина, фибриногена и ЛПОНП, через синусоидальную плазматическую мембрану в кровь, а также в направлении желчного канальца, например, при переносе конъюгатов глютатиона в желчь.Таким образом, аппарат Гольджи участвует в секреции желчи и обнаруживает изменения как при холестазе, так и при холорезе (21).
Цитоскелет гепатоцитов состоит из микротрубочек и микрофиламентов.Среди микрофиламентов различают актинмикрофиламенты, миозиновые микрофиламенты и интермедиарные микрофиламенты.Актиномикрофиламенты особенно расположены вокруг желчного канальца, но
- 7 -
связаны с "тесными соединениями". Посредством похожих на перистальтику сокращений вокруг желчного канльца и посредством изменений плотности "тесных соединений". Микротрубочки с их полыми структурами являются важной составной чатью структуры гепатоцита и играют важную роль во внутриклеточном транспорте метаболитов и новосинтезированного белка (21).
Хотя все гепатоциты обладают такими структурами и метаболическими способностями, из структурной концепции печеночного ацинуса вытекает модель метаболического зонирования печеночной паренхимы с уменьшением оксигенации, а также концентрации субстрата и гормонов в крови от зоны 1 к зоне 3.
Метаболическое зонирование печеночной паренхимы. Функциональная микроструктура печени в форме печеночного аци-
нуса находит свое отражение в модели "метаболического зонирования
печеночной паренхимы" (44). Гепатоцит в перипортальной и перивенозной зоны паренхимы печени в ацинусе различаются по своему снабжению ферментами и субклеточными структурами. Если принять, что активность ключевых ферментов определяют величину способности метаболизма, то можно представить различные функции для перипортальной и перивенозной зон (43) (Таб.34.1). Такие при равном гепатоцеллюлярном содержании ферментов во всех клетках паренхимы печеночного ацинуса возможны различные метаболические функции в различных зонах ацинуса, поскольку зоны подвергаются различному управлению посредством различий в концентрации притекающих субстратов.
Таким образом, концентрация кислорода в перипортальной крови увеличивается и становится такой же, как и в перивенозной крови, также и взаимоотношения отдельных грмонов, как инсулин, глюкагон, катехоламины изменяются во время пассажа по печени, поскольку скорость расхода отдельных гормонов может быть различной. Это означает, что перипортальная зона характеризуется гормональными приказами, по сравнению с перивенозной зоной, возникает зональная гетеррогенность сигнала (42, 43).
Таблица 34.1. Модель метаболического зонирования печеночной паренхимы (по Fungermann)
-----------------------------------------------------------------
Перипортальная зона Перивенозная зона
- 8 -
Окислительный энергетический метаболизмОкисление жирных кислотЦитратный циклДыхательная цепьВыделение глюкозыГлюконеогенезСинтез гликогена из лактатаРаспад гликогена до глюкозыПревращение аминокислотПереход аминокислот до глюкозыРаспад аминокислотСинтез мочевины из азота аминокислот | Поглощение глюкозыГликолизСинтез гликогена из глюкозыРаспад гликогена до лактатаЛипонеогенез |
Обезвреживание Синтез мочевины Оксидативная защита Выделение желчных кислот Выделение билирубина | NН 43Образование глутаминаБиотрансформация |
Общая и специальная патофизиология.
Обмен и печень.
Печень в качестве центрального метаболического органа выполняет важную роль в обмене углеводов, жиров и протеинов.
Обмен углеводов и печень.
Ключевую роль выполняет печень при поддержании гемостаза глюкозы.
В пострезорбтивной фазе, примерно черер 4 часа после приема пищи, потребность организма в глюкозе составляет примерно 7,5 г в час, причем мозг потребляет 6 г в час и эритроциты 1,5 г в час.Эта потребность в глюкозе покрывается печенью, где 4,5 г в час поставляется за счет распада гликогена и 3 г в час - глюконеогенезом из лактата, аминокислот и глицерина (43).
При обычном питании с потреблением углеводов, равном примерно
- 9 -
100 г эквивалента глюкозы во время еды в ходе фазы резорбции только в первые оба часа после приема пищи всасывается примерно 40-60 г глюкозы в час.Мозг и эритроциты потребляют только примерно 7,5 г в час.Избыточная глюкоза прежде всего воспринимается печенью, превращается в гликоген, жир или в СО2.Инсулин, который при всасывании глюкозы одновременно выделяется в кровь воротной вены, стимулирует это поглощение глюкозы и превращение.
Фруктоза превращается в печени при помощи фермента фруктокиназы во фруктозо-1-фосфат и, наконец,альдолазой печени переводится в триозы глицеринальдегид и дигидроксиацетон-фосфат, которые могут метаболизироваться в лактат.Таким способом в нормальной печени в лактат превращается около 70% поглощенной фруктозы.При инфузии фруктозы происходит повышение уровня лактата в сыворотке в 2-5 раз с развитием лактатацидоза, в то время как при инфузии глюкозы в крови наблюдается лишь двукратный подъем концентрации лактата.Причиной развития лактатацидоза при инфузии фруктозы, в отличие от инфузии глюкозы можно усматривать в том, что вследствие очень высокой активности фруктокиназы в печени, с полувременем, равным 18 минутам, фруктоза очень быстро переводится в печени в лактат.
Галактоза в тонком кишечнике освобождается из лактозы, при пассаже крови воротной вены через печень почти полностью удаляется посредством фосфорелирования специфической галактокиназой из крови.Элиминация галактозы через рот или после внутривенной инъекции галактозы применяется для характеризации функции печени (86).
Нарушения метаболизма углеводов при заболеваниях печени.
Поскольку печень работает как глюкостат для целей глюкозогомеостаза организма человека, то заболевания печени ведут к гипогликемии, но чаще к гипергликемии ("гепатогенный диабет").Генетически обусловленные дефекты в метаболизме углеводов в печени ведут к тяжелым врожденным заболеваниям с функциональными ограничениями печени.