В тех случаях, когда один усилительный каскад не дает нужного усиления, используют усилители с несколькими каскадами. Связь между каскадами в усилителях переменного тока осуществляется через разделительные конденсаторы C1и С2,с помощью которых переменная составляющая анодного напряжения от предшествующего каскада передается на вход следующего. В усилителях постоянного тока разделительных конденсаторов нет. Коэффициент усиления всего усилителя зависит от коэффициента усиления отдельных каскадов, их количества и определяется произведением коэффициентов усиления всех каскадов усилителя.
Усилители выполняют роль промежуточного звена между объектом исследования (а также электродами, датчиками) и регистраторами, т. е. представляют собой канал связи. Они не должны искажать характер исследуемого процесса. Поэтому, прежде чем обращаться к техническим характеристикам усилителя, необходимо знать электрические свойства сигнала (биопотенциала) живого объекта или датчика, а также учитывать внутреннее сопротивление источника сигнала
Достаточно полную характеристику сигнала дает формула, опр деляющая объем сигнала: V = TFH, где V – объем сигнала (биопотенциала), Т – его длительность, F – ширина частотного спектра сигнала Н – превышение амплитуды сигнала над шумом. Канал связи также можно охарактеризовать тремя величинами: Тк – время, в течение которого канал выполняет свои функции, FK – полоса частот, которую канал способен пропустить, и Нк – полоса уровней, зависящая от допустимых пределов нагрузок, т. е. минимальная чувствительность и предельная амплитуда сигнала, подаваемого на вход усилителя Произведение этих величин называют емкостью канала: VK = Гк • FK • Як
Передача сигнала по каналу связи (через усилитель) возможна лишь в том случае, когда основные характеристики сигнала не выходят за соответствующие границы характеристик канала связи. Если же параметры сигнала превышают характеристики канала связи, то передача сигнала по этому каналу без потери информации невозможна.
Некоторые влияния усилителя на амплитудно-временные характеристики сигнала иллюстрирует рис. 12.
Верхний и нижний потенциалы на каждом рисунке регистрировались одновременно от одного электрода с помощью двух одинаковых усилителей, у которых были заданы разные постоянные времени входа. Параметры вызванных потенциалов и характеристики усилителей представлены в виде таблицы, геометрические эквиваленты этих же потенциалов - на рис. 13.
Несмотря на то, что в каждом кадре регистрировался один и тот же потенциал, амплитудно-временные характеристики полученных записей заметно отличаются друг от друга, что определяется только параметрами усилителей. Усилитель, с помощью которого регистрировались нижние записи, имел параметры, превышающие характеристики сигнала, поэтому вызванные потенциалы записаны без искажений. Усилитель, с помощью которого регистрировались верхние записи, имел разные параметры, но во всех случаях не превышающие характеристики сигнала, поэтому вызванные потенциалы искажены (потеря информации).
Значение внутреннего сопротивления источника сигнала, зависящего не только от свойств объекта исследования, но и от свойств выходных цепей (например, размеров, формы и сопротивления электродов, коммутирующих проводов и Т. п.), можно показать на следующем примере. Если внутреннее сопротивление источника сигнала больше или равно входному сопротивлению усилителя, то сигнал вообще не будет регистрироваться или его амплитуда будет значительно уменьшена. Поэтому иногда возникает необходимость значительно увеличить входное сопротивление усилителя. В этих случаях используют усилители с катодным повторителем, а в транзисторных схемах – с эмиттерным повторителем, выполненным на полевых транзисторах.
В физиологических лабораториях наиболее часто применяют два типа усилителей: усилители переменного тока и усилители постоянного тока.
Усилители переменного тока. Усилители этого типа состоят из нескольких усилительных каскадов, соединенных между собой с помощью разделительных конденсаторов. Такие приборы используют для усиления переменных составляющих сигнала благодаря их способности пропускать частоты от 0,1 Гц до 10-15 кГц. Они, как правило, имеют большой коэффициент усиления и могут усиливать входной сигнал в миллионы раз, что позволяет отчетливо регистрировать сигналы с исходной амплитудой в несколько микровольт. Усиление и полоса пропускания частот обычно регулируются. В качестве примеров усилителей отечественного производства можно назвать УБП-1-03, УБФ-4-03. Эти устройства применяют для усиления биопотенциалов мозга и сердца, а также сигналов, генерируемых различными датчиками; по выходным характеристикам они легко согласуются с большинством отечественных регистраторов.
Усилители постоянного тока. Эти усилители не имеют разделительных конденсаторов. Между отдельными каскадами у них существует гальваническая связь, поэтому нижняя граница пропускаемых частот доходит до нуля. Следовательно, данный тип усилителей может усиливать сколь угодно медленные колебания. По сравнению с усилителями переменного тока эти усилители имеют значительно меньшийкоэффициент усиления. Например, УБП-1-0,2 имеет коэффициент усиления по переменному току 2,5-1 06, а по постоянному - 8 · 103. jtoсвязано с тем, что у усилителя постоянного тока с увеличением коэффициента усиления уменьшается стабильность работы, появляется дрейф нуля. Поэтому они применяются для усиления сигналов, величина которых превышает 1 мВ (например, мембранный потенциал нейронов, мышечных и нервных волокон и т. п.).
РЕГИСТРИРУЮЩИЕ ПРИБОРЫ (РЕГИСТРАТОРЫ) ОБЩЕГО НАЗНАЧЕНИЯ
Регистраторы необходимы для трансформации электрических потенциалов, которые поступают к ним от отводящих электродов или датчиков (чаще после необходимого усиления), в процессы, воспринимаемые нашими органами чувств. Регистраторы могут преобразовывать и отображать исследуемый процесс или функцию в различных формах, например, в отклонении стрелки измерительного прибора, цифровой индикации, отклонении луча на экране осциллографа, графической регистрации на бумаге, фотографической или магнитной ленте, а также в виде световых или звуковых сигналов и пр.
В большинстве типов регистраторов основными элементами являются: преобразователь энергии колебаний электрических потенциалов в механические (гальванометр, вибратор), инструмент записи (перо с чернилами, струя чернил, пишущий стержень, электронный луч и др.) и механизм развертки процесса во времени (лентопротяжный механизм, электронная развертка). Кроме того, современные регистраторы могут содержать ряд вспомогательных блоков и систем, например коммутаторы, усилители, калибраторы усиления и времени, оптические системы для фотографирования и др.
В медицинской регистрирующей аппаратуре наиболее широко используются три вида преобразователей, создаваемых на основе трех различных принципов трансформации энергии колебаний электрических потенциалов.
1. Использование силы, действующей на проводник с током или ферромагнетик в магнитном поле. На основе этого принципа конструируют различные системы гальванометров, вибраторов, которые применяются в шлейфных и чернильно-пишущих осциллографах (регистраторах).
2. Использование отклонения потока электронов (электронного луча) в электрическом и электромагнитном поле. Этот принцип реализуют с помощью электронно-лучевых трубок, которые являются основной частью электронных (катодных) осциллографов.
3. Использование свойства ферромагнитных материалов намагничиваться под влиянием магнитного поля и сохранять это состояние. На этом принципе конструируют различные типы магнитофонов и магнитографов.
Гальванометры и вибраторы. Эти приборы имеют одинаковый принцип действия, но отличаются по конструктивному исполнению, в связи с чем значительно разнятся друг от друга по чувствительности, инерционности и способности воспроизводить сигналы различной частоты. Существуют гальванометры и вибраторы магнитоэлектрической и электромагнитной системы.
В гальванометрах (вибраторах) магнитоэлектрической системы преобразование электрических сигналов в механический эффект достигается за счет движения проводника (по которому течет электрический ток) в постоянном магнитном поле. Проводник электрического тока может быть выполнен в виде тонкой струны,петли или многовитковой рамки. Многовитковую рамку используют для конструирования магнитоэлектрических вибраторов.
В гальванометрах (вибраторах) электромагнитной системы магнитное поле, в которое помещается ферромагнетик 8, создается за счет постоянного магнита 1 и специальной обмотки 4. Эта обмотка при прохождении через нее электрического тока создает электромагнитное поле, свойства которого определяются направлением силой тока, проходящего через обмотку. При взаимодействии эти, полей создается вращающий момент, под влиянием которого перемещается ферромагнитный якорь.
Использование различных систем, способных отображать перемещение подвижных элементов гальванометров (вибраторов), позволяет конструировать различные типы регистраторов, например, струнный гальванометр, зеркальный гальванометр, шлейфный осциллограф, регистраторы с непосредственно видимой записью (чернильно-перьёвой, струйной, копировальной, тепловой, печатной и др.).
Струнный гальванометр. В этих приборах направление перемещения струны в сильном магнитном поле определяется направлением приложенного к ней тока, а величина перемещения определяется силой тока, проходящего через нее. Колебания струны с помощью оптической системы можно проецировать на экран, а для записи - на движущуюся фотографическую бумагу или пленку.