Якщо мова йде про живі мікроорганізми, а фагоцити здатні захоплювати живі мікроорганізми, то спочатку вони повинні бути убиті. У лейкоцитах діють два бактерицидних механізми:
1) залежний від кисню
2) не залежний від кисню.
Залежний від кисню бактерицидний фактор зв'язаний з утворенням активних метаболітів кисню. Продукція цих речовин починається після контакту фагоцитів з опсонізированими бактеріями. Саме в цей час фагоцити, що у звичайних умовах використовують енергію анаеробного гліколізу, починають посилено поглинати кисень, що позначають терміном респіраторний вибух.
Виникнення респіраторного вибуху обумовлено активацією цитопламатичної НАДФН-оксидази, що каталізує одноелектронне відновлення молекули кисню до супероксидного радикального аніона, "відбираючи" електрон від відновленого піридинового нуклеотиду НАДФН "респіраторного вибуху, що витрачаються в час," запаси НАДФН починають негайно заповнюватися посиленим окислюванням глюкози через гексозомонофосфатний шунт.
Велика частина утворюваних при відновленні ПРО2 супероксидних аніонів ПРО2- піддається дисмутації до Н2ПРО2.
Деяка частина молекул Н2ПРО2 взаємодіє в присутності чи заліза міді із супероксидним аніоном з утворенням надзвичайно активного гідроксильного радикала ВІН- .
Цитоплазматична НАДФ-оксидаза активується в місці контакту фагоцита з мікробом, а утворення супероксидних аніонів відбувається на зовнішній стороні мембрани лейкоцитів, поза внутрішнім середовищем клітки. Процес продовжується і після завершення утворення фагосоми, унаслідок чого усередині її створюється висока концентрація бактерицидних радикалів. Проникаючі усередину цитоплазми фагоцита радикали нейтралізуються ферментами супероксиддисмутазой і каталазой.
Система утворення бактерицидних метаболітів кисню діє у всіх професійних фагоцитах. У нейтрофілах разом з нею діє ще одна могутня бактерицидна система – система міелопероксидази (подібна з нею лероксидазна система мається також у еозинофілів, але її немає в моноцитів і макрофагів).
Міелопероксидаза - фермент, що міститься в азурофільних гранулах нейтрофілів, катализує реакцію між іоном галогену (звичайно хлору) і перекисом водню, що приводить до утворення хлорноватистої кислоти (гіпохлоритного аніона).
Гіпохлорит робить виражена бактерицидна дія сам по собі. Крім того, він може реагувати з чи амонієм амінами, утворити бактерицидні хлораміни.
Незалежний від кисню бактерицидний механізм зв'язаний з дегрануляціею - надходженням усередину фагосоми бактерицидних речовин, що містяться у внутрішньоклітинних гранулах фагоцитів.
Коли утворення фагосоми завершується, до неї впритул наближаються гранули цитоплазми фагоцитів. Мембрана гранул зливається з мембраною фагосоми, і вміст гранул вливається усередину фагосоми. Думають, що стимулом до дегрануляції є збільшення цитозольного Са2+, концентрація якого зростає особливо сильно поблизу фагосоми, де розташовуються органели, що накопичують кальцій.
Цитоплазматичні гранули всіх облігатних фагоцитів містять велика кількість біологічно активних речовин, здатних убивати і переварювати мікроорганізми й інші поглинені фагоцитами об'єкти. У нейтрофілах, наприклад, мається 3 типи гранул:
1) секреторні пухирці;
2) первинні (азурофільні);
3) вторинні (специфічні) гранули.
Найбільше легко мобілізуємі секреторні пухирці полегшують вихід нейтрофілів із судин, їхню міграцію в тканинах. Знищують і руйнують поглинені частки речовини азурофільних і специфічних гранул. В азурофільних гранулах, крім уже згаданої міелопероксидази, містяться діючі незалежно від кисню низькомолекулярні бактерицидні пептиди дефенсини, слабка бактерицидна речовина лізоцим і безліч ферментів, що руйнують; у специфічних гранулах лізоцим і білки, що зупиняють розмноження мікроорганізмів, зокрема, лактоферрин, связ'ивающий необхідне для життєдіяльності мікроорганізмів залізо.
На внутрішній мембрані специфічних і азурофільних гранул знаходиться протонний насос, що переносить водневі іони з цитоплазми фагоцита усередину фагосоми. У результаті рН середовища у фагосомі знижується до 4-5, що викликає загибель багатьох мікроорганізмів усередині фагосоми. Після того як мікроорганізми гинуть, вони руйнуються усередині фагосоми за допомогою кислих гідролаз азурофільних гранул.
До числа важливих бактерицидних факторів, що діють в активованих макрофагах, варто віднести і продукцію оксиду азоту (NО), що здійснюється за допомогою індуцибільної NO-синтази. Фермент цей активується γ-інтерфероном, фактором некрозу пухлин, Мул-1-бета й іншими запальними цитокінами. NО діє цитостатично на пухлинні клітки, бактерії, паразити, віруси, інгібуя активність багатьох ферментів, що беруть участь у синтезі білків і нуклеїнових кислот.
Не всі живі мікроорганізми гинуть усередині фагоцитів. Деякі, наприклад, збудники туберкульозу зберігаються, виявляючись при цьому "відгородженими" мембраною і цитоплазмою фагоцитів від протимікробних лік.
Активовані хемоаттрактантами фагоцити здатні вивільняти уміст своїх гранул не тільки усередину фагосоми, але і в позаклітинний простір. Це відбувається під час так називаного незавершеного фагоцитозу - у тих випадках, коли по тим чи іншим причинам фагоцит не може поглинути об'єкт, що атакується, наприклад, якщо розміри останнього значно перевищують розміри самого чи фагоцита якщо об'єктом фагоцитозу є комплекси антиген-антитіло, що знаходяться на плоскій поверхні судинного ендотелія. При цьому вміст гранул і продукуємі фагоцитами активні метаболіти кисню впливають і на об'єкт атаки, і на тканині організму хазяїна.
Ушкодження тканин хазяїна токсичними продуктами фагоцитів стає можливим не тільки в результаті незавершеного фагоцитозу, але і після загибелі чи лейкоцитів унаслідок руйнування мембрани фагосоми самими поглиненими часточками, наприклад часточками чи кремнію кристалами сечової кислоти.
Нейтрофільние лейкоцити першими инфільтрируют зону запалення. Їх називають клітками "першої лінії захисту" чи "загоном швидкого реагування". Це - високодиференційовні, рухливі клітки, що, вийшовши із судин, швидко знаходять свої мішені, поглинають і руйнують їх за допомогою механізмів фагоцитозу. Нейтрофіли ефективно захищають людини від багатьох бактеріальних і грибкових інфекцій. Вони є головними клітками запального ексудата протягом перших 24 ч гострої запальної відповіді.
Протягом наступних 24 ч їх поступово заміщають моноцити. Це можна пояснити тим, що, по-перше, тривалість життя нейтрофілів поза судиною не перевищує48 ч, тоді як моноцити можуть жити у вогнищі запалення кілька доби; по-друге, стимули, що підтримують міграцію моноцитів, діють більш тривалий час, чим стимули, що підтримують міграцію нейтрофілів.
Моноцити крові починають мігрувати з мікроциркуляторних судин на кілька годин пізніше нейтрофілів. У вогнищі запалення вони перетворюються в дуже активні запальні макрофаги - рухливі клітки, що захищають організм від інфекційних агентів, що проникнули в його, за допомогою фагоцитозу. Як і нейтрофіли, макрофаги секретиру-ют лізосомальні ферменти і кисневі радикали В теж час макрофаги відрізняються від нейтрофілів, властивостями, особливо важливими на більш пізніх стадіях гострого запалення й у механізмах загоєння рані. Макрофаги здатні розпізнавати, а потім поглинати і руйнувати ушкоджені, нежиттєздатні клітки власного організму, у тому числі і лейкоцити. З цим зв'язана їхня надзвичайна роль в очищенні від запального ексудата, що необхідна для нормального плину відбудовних процесів. Макрофаги - головні клітки, що розчиняють залишки ушкодженої сполучної тканини. Вони синтезують і секретують нейтральні протеази (еластаза, колагеназа, активатор плазміногена), що руйнують позаклітинно колагенові і еластинові волокна сполучної тканини. Дрібні фрагменти, що утворяться в результаті протеолізу, з’єднувальнотканинного матрикса поглинаються потім макрофагами і розкладаються внутріклітинно з залученням лізосомальної системи.
Макрофаги беруть участь в імунній відповіді хазяїна в якості анти-генпрезентуючих кліток. У вогнищі запалення вони поглинають антигенні речовини, доставляють їх у відповідні лімфатичні вузли, де в зміненому виді представляють лімфоцитам.
Макрофаги відіграють ключову роль у загоєнні раней. У тварин, позбавлених мононуклеарних фагоцитів в експерименті, рані не гояться. Це можна пояснити тим, що макрофаги секретують фактори росту для фібробластів і інших мезенхимальних кліток, продукують фактори ангіогенеза, що керують реваскуляризаціею ушкодженої тканини. Нарешті, активовані макрофаги продукують цитокіни інтерлейкін-1, інтерлейкін-6, фактор некрозу опухолей-ос, що викликають ряд важливих системних захисних реакцій, що позначаються "реакціями гострої фази".
Еозинофіли накопичуються в тканинах при запаленні, викликуваному патогенними гельмінтами і найпростішими, і при алергійних запальних реакціях, опосередковуваних Ig, таких, як риніт і атопічна бронхіальна астма.
Нагромадження еозинофілів у тканинах обумовлено їхньою міграцією з мікроциркуляторних судин під впливом селективних і неселективних хемоаттрактантів До числа перших відноситься хемокінеотаксин, до числа других лейкотріен-в4, фактор активації тромбоцитів, З5а-фрагмент комплементу і відмінні від еотаксина хемокіни.
У вогнищі запалення еозинофіли атакують паразити, розміри яких значно перевершують розміри самих еозинофілів, використовуючи механізм дегрануляції. У дегрануляції еозинофілів істотну роль грають Ig і Ig, що з'єднуються своїми Fab-фрагментами з поверхневими антигенами паразитів, а своїми Fc-фрагментами - зі специфічними рецепторами на мембрані еозинофілів. Взаємодія еозинофілів з фіксованими на мембрані паразитів антитілами є стимулом для викиду вмісту їхніх гранул у позаклітинний простір. Усередині гранул еозинофілів знаходяться катіонні білки, до яких відносяться головний володіючий властивостями основ білок (major basic protein), еозинофільний катіонний білок і еозинофільний нейротоксин (еозинофільний білок X). Усі ці білки, особливо перші два, мають властивості гельминтотоксинів і здатні викликати загибель паразитів, що атакуються, наприклад шистосом. Крім катіонних білків, усередині гранул еозинофілів міститься фермент пероскидаза, дія якої подібно дії міелопероксидази нейтрофілів.