Смекни!
smekni.com

Морфофункціональні та біохімічні особливості системи еритрону за умов цукрового діабету 1-го типу (стр. 3 из 5)

При аналізі вмісту стабільних метаболітів NO – нітратів та нітритів ми отримали результати, які підтверджують дані змін активності NOS, визначеної прямим методом (табл.1).

Вплив аміногуанідину на фізико-хімічні властивості гемоглобіну за умов ЦД 1-го типу. Проведено дослідження впливу аміногуанідину на вміст лігандних форм, спектральні характеристики, нітритредуктазну активність гемоглобіну та кисеньтранспортну функцію еритроцитів. З метою виявлення факторів, які могли б впливати на кисневу афінність гемоглобіну і функціонування киснево-транспортної системи організму в цілому був проведений аналіз лігандних форм гемоглобіну крові щурів у нормі та за умов ЕЦД при введенні AG з використанням методу абсорбційної спектроскопії. В результаті проведених експериментів ми зареєстрували достовірне зростання вмісту метгемоглобіну за умов ЦД. Введення in vivo AG – як у нормі так і за умов цукрового діабету викликало зниження метгемоглобіну, що може свідчити про те, що зростає роль нітритредуктазної ланки оксиду азоту. Для того з’ясування механізмів депонування NO за умов модельного ЦД 1-го типу було досліджено процес нітрозування Hbinvitro, а також проаналізовано електронні спектри дезокси-Hb та нітрозил-Hb (NO-Hb) у нормі, за умов стрептозотоцинового діабету та на фоні введення AG. Поступове перетворення дезокси-Hb в NO-Hb спостерігали за характерними змінами поглинання у видимій області спектру (рис.1). Широка асиметрична смуга з максимумом при 555-560 нм замінялася двома смугами із максимумами поглинання 545,8 нм та 572,4 нм, які є характерними для нітрозил-Hb [Van Kampen, 1983]. Час переходу дезокси-Hb у NO-Hb за умов стрептозотоцинового діабету зростав приблизно на 70%. Електронний спектр (рис.2, крива 2) нітрозил-Hb тварин із стрептозотоциновим діабетом в порівнянні з NOFe2+Hb контрольних щурів характеризувався гіпсохромним ефектом у межах смуги Соре. Ці зміни у електронному спектрі Hb зумовлені перерозподілом електронної густини у системі спряжених зв’язків протопорфіринового макроциклу і атома заліза. У вихідній дезоксигенованій формі гемоглобіну Fe2+ знаходиться у високо-спіновому стані, має координаційне число 5 і міститься за площиною гему на відстані 0,07нм. При взаємодії оксиду азоту з атомом Fe2+ у шостому координаційному положенні залізо переходить у низько-спіновий стан, а число лігандів у координаційній сфері збільшується до шести.

Перехід у низькоспіновий стан супроводжується його зміщенням на 0,07 нм у площину гему, що спричиняє поетапний розрив сольових зв’язків між б-субодиницями і зміщенням субодиниць уздовж контактів б1-в2 і б2-в1.

Нітрозування дезокси-Hb щурів із стрептозотоциновим діабетом супроводжувалось гіперхромним ефектом в області поглинання ароматичних амінокислот, що реєструвалося як зміщення максимуму поглинання з 268,3 до 274,9 нм, і появою широкої смуги поглинання при 334 нм порівняно з NO-Hb контрольних тварин. Зміни спектру поглинання в ультрафіолетовій області відбуваються за рахунок взаємодії NO з білковою частиною молекули Hb, адже відомо, що при 320-360 нм поглинають світло S-нітрозотіольні похідні білків [Stamler, 1992]. Очевидно, відбувається утворення SNO-Hb, який є продуктом нітрозилюванням в-93 цистеїну. Спектри нітрозо-Hb контрольних та з ЕЦД типу щурів, які представлені на рис.2, свідчать про те , що введення AG in vivo (крива -3) мало нормалізуючий вплив на фізико-хімічні властивості молекули Hb.

При дослідженні нітритредуктазної ланки утворення NO за участю дезоксигемоглобіну за умов цукрового діабету виявлено що дезоксигемоглобін щурів із ЕЦД виявляє відносно більшу нітритредуктазну активність порівняно з дезокси-Hb контрольних щурів. Введення AG практично не змінювало досліджуваних нами показників у контрольних тварин. Проте, у тварин з ЕЦД показано зниження нітритредуктазної здатності дезокси-Hb за введення AG, про що свідчить зниження інтенсивності процесів нітрозилювання дезокси-Hb.

При аналізі кривих дисоціації оксигемоглобіну (КДО) отримано чітко виражений зсув кривої дисоціації вліво і зниження Р50 у щурів з ЕЦД (рис. 3). Виявлено також достовірне зростання вмісту глікозильованого гемоглобіну, що є одним з факторів, що викликає ці зміни (табл. 2). Введення AG контрольним щурам викликає зсув КДО вправо порівняно з контролем, що свідчить про зменшення спорідненості гемоглобіну до кисню (Р50=29,31±1,39). При дії AG за умов ЕЦД нормалізуються киснево-транспортні функції гемоглобіну, тобто відбувається зсув КДО вправо порівняно з діабетом і наближення до контролю (рис. 3), вміст глікозильованого гемоглобіну при цьому достовірно зменшується (табл. 2). При введенні аміногуанідину за умов ЕЦД зсув КДО вправо вказує на перерозподіл у співвідношенні : MetHb / HbFe2+NO / SNO-Hb в сторону утворення HbFe2+NO.


Табл. 2.

Напівнасичення гемоглобіну киснем та вміст глікозильованого гемоглобіну

(М±m, n=8-10)

Варіант досліду Р 50, мм рт. ст.. Вміст Hb Ac, %
Контроль 26,61±2,11 4.53 ± 0.05
Діабет 19,20±1,60* 8.81 ± 0.41*
Контроль + AG 29,31±1,38 4.49 ± 0.07
Діабет + AG 23,31±1,08** 6.03 ± 0.28**

Тобто відбувалось зниження спорідненості гемоглобіну до кисню та полегшення дисоціації оксигемоглобіну і гіпоксичного стану, що виникає при даній патології.

Поліморфізм еритроцитів периферичної крові у нормі та за умов цукрового діабету 1-го типу на фоні впливу L-аргініну та інгібіторів NO-синтази

Результати досліджень поверхневої архітектоніки еритроцитів щурів в нормі та за умов ЕЦД на фоні впливу основного субстрату та інгібіторів NO-синтази представлені на рис. 4, 5. Отримано достовірні дані про кількість дискоцитів, стоматоцитів (клітини, які мають форму округлого диску з вираженою увігнутістю з одного боку), ехіноцитів (еритроцитів з виростами різної форми) і форми еритроцитів, які важко піддаються класифікації (табл. 3).

В нормі еритроцитарний пул представлений в основному двовігнутими дискоцитами (рис. 4) до 97%. Клітинна поверхня дискоцита у скануючому мікроскопі виглядає зглаженою, без рельєфних утворень. Трансформовані форми еритроцитів зустрічаються дуже рідко (3% від усієї кількості клітин). Серед них трапляються дискоцити з виростами, гребенями (ехіноцити), куполоподібні (стоматоцити), дзвоноподібні еритроцити. Це є морфологічним проявом онтогенезу червоних кров’яних клітин. Потрібно відмітити, що у контрольних щурів не виявлено значних змін у поверхневій архітектоніці еритроцитів за умов впливу основного субстрату – L-аргініну та інгібіторів NO-синтази (AG, L-NAME) (рис.4).

Аналізуючи поверхневу архітектоніку еритроцитів щурів при ЕЦД (рис 4, Д, рис. 5), можна побачити, що вони зазнають значних змін. На фоні зменшення чисельності популяції функціонально повноцінних двовігнутих дисків (до 69,72 ±2,18 %) спостерігалось збільшення кількості трансформованих клітин, що знаходяться на різних стадіях дегенерації.

Рис. 5. Окремі дегенеративні форми еритроцитів щурів за умов експериментального ЦД: А, Б, В, Д – еритроцити з гребнями різної форми; Г – дзвоноподібний еритроцит; Е, Є – еритроцити з поодинокими виростами; Ж, З – еритроцити з багатьма виростами.

Це еліпсовидні клітини, клітини у вигляді плоского диску, дискоцити з гребенем, виростами, сферичні, куполоподібні, дзвоноподібні, еритроцити у вигляді спущеного м’яча, дегенеративно-змінені клітини червоної крові, які важко піддаються класифікації. Різноманітність дегенеративних форм еритроцитів, виявлених нами за умов ЕЦД представлена на рис 5. Відмічено достовірне зростання концентрації глюкози та HbAc (табл.3).

Табл.3.

Рівень глюкози та вміст глікозильованого гемоглобіну при введенні досліджуваних речовин щурам у нормі і за умов експериментального цукрового діабету (М±m, n=14)

Варіант досліду Вміст HbAc, % Рівень глюкози в крові, ммоль/л
К 4.53 ± 0.05 5.6 ± 0.5
К +L-Аргінін 4.47 ± 0.11 5.8 ± 0.6
К + L-NAME 4.60 ± 0.12 6.0 ± 0.7
К + AG 4.49 ± 0.07 5.16 ± 0.9
Д 8.81 ± 0.41* 12.5 ± 0.5*
Д +L-Аргінін 9.92 ± 0.63** 14.2 ± 1.1**
Д + L-NAME 8.01 ± 0.47 12.2 ± 0.4
Д + AG 6.03 ± 0.28** 8.6 ± 0.4**

Введення піддослідним тваринам L-аргініну призводило до збільшення кількості дегенеративних форм еритроцитів (рис.4., Е,), зокрема – дискоцитів з одним та багатьма виростами – ехіноцитів (до 19,71±1,81 %). Цікаво відзначити, що при введенні L-аргініну значно зростав рівень глюкози у крові тварин з ЕЦД та вміст глікозильованого гемоглобіну, тобто посилювався патологічний стан (табл. 3). Інгібітори NO-синтази AG та L-NAME за умов ЕЦД викликали зменшення кількості трансформованих клітин (рис 4., Є, Ж). Крім того введення AG знижувало рівень глюкози в крові і вміст глікозильованого гемоглобіну (див. табл. 3) за рахунок пригнічення неферментативного глікозилювання білків, що, незаперечно, має протекторний вплив на увесь організм за умов даної патології.

Вплив L-аргініну та інгібіторів NO-синтази на стан антиоксидантної системи еритроцитів у нормі та при ЦД 1-го типу. Результати дослідження ферментів антиоксидантного захисту та продуктів ПОЛ представлені в табл. 4. Активність супероксиддисмутази (СОД) при діабеті знижується, що може бути пов’язане із впливом кінцевих продуктів глікозилювання та пероксинітриту. Введення L-аргініну та інгібіторів NO-синтаз як у нормі, так і за умов ЦД мало ефект підвищення активності досліджуваного ферменту. Окремо потрібно відзначити, що введення AG мало за умов ЦД нормалізуючий вплив, тобто значення активності СОД було порівняльним до величини цього показника у нормі.

Каталаза реагувала на запропоновані модельні ситуації подібним чином. Глутатіонпероксидаза (ГПО) – фермент, який виявив найменші амплітуди відповіді, але слід зазначити, що навіть незначне інгібування ГПО за фізіологічних умов спричиняє зростання токсичних ефектів та підвищення концентрації активних форм кисню.