При окончательной обработке наблюдений величины интенсивности радиации интересно сопоставить с величиной фазы и радиирующей площадью солнечного диска. Для такого сопоставления можно использовать не только абсолютные величины радиации, но и относительные. При этом под относительной величиной в данном случае понимается отношение измеренной при данной фазе интенсивности к той интенсивности, которая наблюдалась бы без затмения при неизменных прочих условиях. Интенсивность при открытом Солнце в этом случае может быть определена графической интерполяцией дневного хода радиации, как это сделано на рис. 1.
Большой интерес с геофизической точки зрения представляет выяснение вопроса об изменении прозрачности атмосферы во время затмения. Причиной изменения прозрачности может быть, например, усиление конденсационных процессов в атмосфере в полосе затмения, благодаря чему может возрасти количество и размеры помутняющих атмосферу водяных капелек и ледяных кристалликов. С другой стороны, в условиях ясного летнего дня в полосе затмения должны ослабевать восходящие конвективные потоки нагретого воздуха и вместо поднятия может даже происходить опускание охлаждённого воздуха. Такие процессы должны вызывать ослабление конденсации в атмосфере и увеличение её прозрачности. Окончательный результат может оказываться различным при различных состояниях атмосферы, и для полного выяснения вопроса необходимо проведение достаточного количества наблюдений.
Обычное определение характеристик прозрачности атмосферы перед началом затмения и после его окончания не даёт ответа на вопрос, как менялась прозрачность во время самого затмения. Но изменения прозрачности можно обнаружить по изменениям спектрального состава радиации. Правда, он меняется в течение дня и при неизменной прозрачности в результате изменения длины пути солнечных лучей в атмосфере (чем ближе к горизонту Солнце, тем большей относительной энергией в спектре обладают лучи длинных волн - красные и инфракрасные). Но этот дневной ход получается очень правильным и плавным, и влияние его легко исключить. Оставшиеся неисключёнными изменения спектрального состава будут свидетельствовать о наличии в атмосфере процессов, изменяющих её прозрачность. Так, уменьшение количества водяных паров в воздухе уменьшает поглощение радиации в длинноволновой части спектра и повышает долю этой части спектра в общем потоке солнечной радиации. Такое же действие должно оказывать уменьшение размеров и числа частиц конденсационной мутности, сильно рассеивающих длинноволновую радиацию. Процессы, идущие в противоположном направлении, должны приводить к относительному повышению энергии коротковолновой радиации.
Конкретный пример изменений спектрального состава солнечной радиации во время затмения даёт рис.2, на котором представлены результаты измерений в Карадаге во время того же частного затмения 9 июля 1945 г., о котором говорилось ранее. Верхняя кривая даёт изменение длинноволновой части спектра (625-2000 mμ), нижняя - коротковолновой (290-525 mμ). Ординаты обеих кривых представляют интенсивности радиации данного участка спектра, выраженные в процентах по отношению к интенсивности общего потока радиации. Пунктирные кривые представляют нормальный ход изменения спектрального состава в зависимости от высоты Солнца, установленной по многолетним данным. При вычислениях приняты во внимание все упоминавшиеся ранее поправки.
Как показывает график, наступление затмения действительно вызывает значительные изменения спектрального состава, которые не могут быть объяснены ни изменением высоты Солнца, ни влиянием облачности (это последнее при обработке наблюдений исключено путём сглаживания кривых хода радиации, подобно тому как это сделано на рис.1). Особенно обращает на себя внимание относительное увеличение интенсивности длинноволновой радиации, наблюдавшееся всё время, пока Луной было закрыто более 35% радиирующей площади солнечного диска и достигшее максимума во время наступления наибольшей фазы (которая для Карадага составляла 0,74). Представляет интерес также заметное повышение интенсивности коротковолновой радиации во второй половине затмения. Насколько общий характер имеют особенности изменения спектрального состава, обнаруживающиеся на рис.44, сказать пока трудно за отсутствием данных, обработанных подобным образом. Поэтому тщательно проведённые наблюдения над спектральным составом прямой солнечной радиации представляют большую ценность.
Рассеянная радиация неба, падающая на горизонтальную поверхность, наблюдается пиранометром Янишевского. При этих наблюдениях термобатарея пиранометра должна защищаться экраном от воздействия прямой солнечной радиации.
Отсчёты интенсивности рассеянной радиации во время затмения достаточно производить с промежутками в 2-3 минуты, начиная и заканчивая непрерывные отсчёты одновременно с отсчётами прямой солнечной радиации.
При отсутствии актинометра необходимо измерять пиранометром не только рассеянную, но и суммарную радиацию Солнца и неба. В этом случае отсчёты рассеянной и суммарной радиации делаются попеременно с промежутками в одну минуту, причём после каждого отсчёта рассеянной радиации экран убирается, и термобатарея пиранометра полностью освещается Солнцем. После каждого отсчёта суммарной радиации батарея снова затеняется экраном. Разность величин суммарной и рассеянной радиации даёт величину прямой солнечной радиации, падающей на горизонтальную поверхность.
Непрерывные измерения одной рассеянной радиации может вести один наблюдатель. Если же будет измеряться и суммарная радиация, то потребуется участие второго наблюдателя, в задачу которого будет входить только установка и убирание экрана.
Наблюдения остальных элементов радиационного режима - длинноволновой радиации атмосферы, уходящей от земной поверхности радиации и радиационного баланса - представляют особенный интерес, так как до сих пор эти элементы во время затмений не наблюдались.
Длинноволновая радиация атмосферы меняется во время затмения вследствие понижения температуры нижнего слоя атмосферы. На её величину может оказывать также влияние ослабление или усиление конденсационных процессов, изменение количества водяного пара в воздухе, изменение запылённости и т.д. Таким образом, атмосферная радиация является чувствительным индикатором происходящих в атмосфере процессов, и её измерения могут дать очень интересные результаты.
Уходящая от земной поверхности радиация определяется прежде всего температурой излучающей поверхности деятельного слоя и должна во время затмения уменьшаться вместе с последней. Она зависит также и от свойств самой поверхности. Поэтому при измерениях уходящей радиации приборы следует располагать над поверхностью, наиболее характерной для данного типа ландшафта.
Результативными обобщающими показателями изменений общего потока лучистой энергии во время затмения служат величины приходящей радиации и радиационного баланса. Эти величины могут быть подсчитаны по их составляющим. Величины радиационного баланса могут быть получены и путём непосредственных измерений.
Атмосферная радиация, уходящая радиация и радиационный баланс могут измеряться одним и тем же прибором - эффективным пиранометром, представляющим собой балансомер, установленный над чёрной поверхностью. Этот прибор измеряет так называемую эффективную радиацию, т.е. разность между интенсивностью радиации, падающей извне на термобатарею, и собственным излучением прибора. Это последнее вычисляется по температуре корпуса прибора, которая измеряется при наблюдении. Прибавление к измеренной эффективной радиации величины собственного излучения прибора даёт интенсивность радиации всех длин волн, падающей на термобатарею. Если эффективный пиранометр установлен горизонтально и обращен приёмной поверхностью к небесному своду, то на него будут действовать совместно солнечная, рассеянная и атмосферная радиации. Влияние первой можно исключить, затеняя термобатарею экраном. Рассеянная радиация измеряется обычным пиранометром и исключается из общей радиации путём вычитания.
Таким образом, величина длинноволнового излучения атмосферы получается из наблюдений с эффективным пиранометром, обращенным вверх.
Если повернуть эффективный пиранометр приёмной поверхностью вниз, то аналогичным образом можно измерить интенсивность радиации, отражаемой и излучаемой тем участком земной поверхности, над которым расположен прибор.
Наконец, поворачивая эффективный пиранометр приёмной поверхностью попеременно вверх и вниз и взяв разность измеренных величин, можно определить радиационный баланс поверхности, находящейся под прибором.
Для непрерывных измерений всех трёх перечисленных выше элементов эффективный пиранометр должен быть смонтирован над участком однородной поверхности на поворотном бруске, позволяющем быстро осуществлять переворачивание прибора. Если вместо эффективного пиранометра имеется только балансомер, то более целесообразно превратить его в эффективный пиранометр, вставив балансомер в оправу, которая без особых затруднений может быть изготовлена на месте по указаниям, содержащимся в упомянутом выше "Наставлении по производству актинометрических наблюдений", стр.123-125 (см. примечание на стр.182).
В случае невозможности выбрать открытый участок с однородной поверхностью достаточных размеров, эффективным пиранометром наблюдается только атмосферная радиация, и прибор всё время остаётся обращенным к небесному своду.
При наблюдениях с эффективным пиранометром для последующей обработки наблюдений необходимо непрерывно отмечать температуру прибора и скорость ветра на уровне пиранометра. Для измерения скорости ветра лучше всего использовать ручной анемометр Фусса, отмечая показания счётчика оборотов при каждом отсчёте по гальванометру. Отсчёты температуры могут делаться с пятиминутными промежутками.