Смекни!
smekni.com

Теория принятия решений (стр. 8 из 12)

В данном случае будем иметь четыре уравнения, соответствующие четырем возможным чистым стратегиям игрока В:a1* = р1 + 3

a2* = –4р1 + 7

a3* = 7р1 + 1

a4* = –р1 + 3

Чтобы определить наилучший результат из наихудших, построим нижнюю огибающую четырех заданных прямых (на рисунке выделена жирной линией). Эта огибающая представляет минимальный гарантированный выигрыш игрока А, независимо от того, что делает игрок В. Точка максимума нижней огибающей – это и есть решение задачи по принципу максимина. Координатами этой точки будут р1 – одна из вероятностей смешанной стратегии игрока А и a – выигрыш игрока А.

# Заметим, что содержательной является только часть графика, заключенная в интервале 0 ≤ р1 ≤ 1 . Все линии и точки, лежащие за пределами этого интервала не принимаются во внимание. #

"На глаз" координаты точки максимума нижней огибающей видны плохо. Точка максимума нижней огибающей – это точка пересечения прямой 3 и прямой 4. Найдем её точные координаты, решив систему соответствующих уравнений:

Þ
Þ
Þ

Далее находим p2: p2 = 1 – p1 = 1 –

=

Итак, для игрока А все ясно:

смешанная стратегия игрока А: Р =

,

выигрыш игрока А:a =

.

Аналогичные рассуждения нужно повторить и для игрока В.

Точка максимума нижней огибающей – это точка пересечения прямой 3 и прямой 4. Значит оптимальная смешанная стратегия игрока В определяется двумя стратегиями В3 и В4 соответственно.

Проигрыш игрока В, соответствующий i-той чистой стратегии игрока A, будет вычисляться по формуле:

вi* = ai3 q3 + ai4 q4 = ai3 q3 + ai4 (1 – q3) = (ai3 – ai4) q3 + ai4

В данном случае будем иметь два уравнения, соответствующие двум возможным чистым стратегиям игрока А:

в1* = 6q3 + 2

в2* = –2q3 + 3

Решив систему этих двух уравнений, найдем q3 – одну из вероятностей смешанной стратегии игрока В и в – выигрыш игрока В:

Þ
Þ
Þ

Далее находим q4: q4 = 1 – q3 = 1 –

=

Все выяснили также и для игрока В:

смешанная стратегия игрока В: Q =

проигрыш игрока В:в =

Выигрыш игрока А и проигрыш игрока В совпадают – это и будет ценой игры.

Ответ: смешанная стратегия для первого игрока Р =

,

смешанная стратегия для второго игрока Q =

,

цена игры n =

.

Видим, что ответы в случае решения задачи симплекс-методом и в случае решения этой же задачи графическим методом совпали.

Мораль вышесказанного такова, что если имеем задачу размерности 2 х nи под рукой нет компьютера, то точное решение можно получить с помощью графического метода.

Если имеем задачу размерности m х 2 , то делаем то же самое, поменяв игроков местами и транспонировав платежную матрицу. #

Если же под рукой есть компьютер, то такие задачи удобнее решать симплекс-методом средствами MS Excel. Если же поставленная задача любой большей размерности, то решить ее можно только симплекс-методом либо вручную, либо опять таки средствами MS Excel.

Раздел 5. Принятие решения в условиях нескольких критериев выбора

5.1Постановка задачи, основные понятия

Все перечисленные классические критерии выбора не охватывают всевозможные практические ситуации. К каждой конкретной практической ситуации ЛПР может выработать свой "новый" критерий, который будет более точно количественно и качественно описывать данную ситуацию.

К сожалению или счастью, жизнь устроена несколько сложнее и достаточно часто бывает невозможно описать ситуацию одним критерием. Даже в обыденной жизни мы практически никогда не используем единственный критерий, например, при выборе подарка ко дню рождения, или при выборе блюд из меню в кафе, или при выборе места, куда поехать в отпуск.

А представьте, что вы – проектировщик баз данных. В таком случае при выборе оптимального проекта баз данных вам следует учитывать тоже несколько критериев: объем занимаемой оперативной памяти, средняя скорость одной операции, размер программного кода, аппаратные требования, обучаемость обслуживающего персонала, возможность и стоимость сопровождения и прочие. Ниже будут рассматриваться прикладные задачи с уже изученными нами критериями: Байеса, Лапласа и др. Но если вы все-таки – например, проектировщик баз данных, то вам надо будет вместо них рассматривать "свои" критерии, которые являются спецификой вашего рода деятельности.

Такие ситуации описываются многокритериальными задачами принятия решений.

Теоретически можно представить себе случай, когда в допустимом множестве альтернатив существует одна альтернатива, которая лучше всех по всем критериям сразу. Очевидно, что она и будет лучшей.

Однако на практике такое бывает не всегда. Для решения таких задач разработаны специальные методы. Надо сказать, что данное научное направление сравнительно ново – оно развивается последние 30 – 40 лет. Уже известные методы корректируются, обобщаются, разрабатываются новые. Приятно отметить, что одним из основоположников и всемирно признанным гуру данного научного направления является наш почти соотечественник В.В. Подиновский.

Рассмотрим приведенный выше числовой пример. И применим к нему все изученные нами критерии. Результаты отобразим в таблице:

Заметим, что стратегия (альтернатива) А4 по всем девяти критериям хуже, чем любая другая стратегия. Её можно убрать из рассмотрения, при этом результат выбора не изменится. Это утверждает принцип Парето. Оставшиеся альтернативы А1, А2, А3, будут образовывать множество Парето для данной задачи.

Из допустимого множества альтернатив множество Парето образуют те альтернативы, каждая из которых не хуже по всем критериям, чем любая альтернатива, не вошедшая во множество Парето, а хотя бы по одному критерию – лучше.

Согласно принципу Парето оптимальная альтернатива содержится во множестве Парето. Если, например исходная задача содержит 100 альтернативных решений, а множество Парето состоит из 20 альтернатив, то применение принципа Парето в 5 раз уменьшает размерность задачи, соответственно в 5 раз увеличится скорость работы программы, реализующей решение такой задачи!

Далее полученную многокритериальную задачу принятия решения на множестве Парето можно свести к однокритериальной, введя некий обобщенный критерий Z* как функцию от предыдущих частных критериев. Обобщенный критерий Z* в литературе еще называют функцией полезности. Процесс сведения многокритериальной задачи к однокритериальной называется свёрткой.

5.2Линейные свёртки

Начнем с линейных свёрток. Все линейные свёртки основываются на принципе: "низкая оценка по одному критерию может быть компенсирована высокой оценкой по другому".

Рассмотрим простую линейную аддитивную свёртку:

Z* = max

,

То есть, данная свёртка подсчитывает, сколько раз та или иная стратегия была оптимальной. Результаты отобразим в таблице:

В последнем столбе таблицы размещены результаты свёртки. Как видим, оптимальной стратегией является А3.

Такая свёртка является самой простой из линейных, она не учитывает количественных показателей значений критериев.

Рассмотрим линейную аддитивную свёртку с нормирующими множителями:

Z* = max

,

где aj =

– нормирующие множители.

Как видим, оптимальной стратегией также является А3. Но в этом случае уже нет такого количественного отрыва как в предыдущей простой линейной свёртке. Да и стратегия А2 уже не кажется очень сильно плохой. Если бы были чуть другие начальные данные, то ответы двух рассмотренных вариантов свёрток могли бы и не совпасть.

Линейная аддитивная свёртка с нормирующими множителями позволяет работать с количественными критериями, имеющими, как в нашем случае, разные единицы измерений.

Рассмотрим линейную аддитивную свёртку с весовыми коэффициентами:

Z* = max

,

где aj – те же нормирующие множители,

вj – весовые коэффициенты, отражающие относительный
вклад частных критериев в общий критерий.

Весовые коэффициенты принято указывать уже нормированными величинами (Sвj = 1).