Смекни!
smekni.com

Контроль качества сгорания топлива в методических нагревательных печах (стр. 13 из 20)

Описанный выше газоанализатор под названием Oxygor вы­пускает фирма Maihak (Гамбург, ФРГ). Минимальный диапазон измерения 0—0,1 % (объемн.) О2; прибор может работать также с подавлением нуля при соответствующем сравнительном газе (для газа, содержащего 20—21 % О2 — с воздухом, 99—100 % О2 — с кислородом) с точностью ±2 % от диапазона измерения. Прибор термостатирован. Чистое запаздывание его ~5 с, время выхода на 90 %-ное показание 15 с. При расходе сравнительного газа 10 см3/мин 10-кг баллон с СО2 может работать около года.

Рис. 16. Схема газоанализатора Оху-ttiat 2 фирмы Siemens: 1 — анализируемый газ; 2 — вспомога­тельный газ; 3 — измерительная камера; 4 — полюс электромагнита переменного тока; 5 — детектор малых расходов

В 1970 г.. фирма Siemens начала выпускать газоанализатор Охуmat . Измерение изменения давления вспомогательного газа в нем производится с помощью недавно разработанного ми­кродетектора потока газа. Этот детектор позволяет работать с пе­риодически изменяющейся силой магнитного поля, создаваемого электромагнитом. Возникающие при этом пульсирующие изме­нения газового потока измеряются микродетектором и усили­ваются. Схема устройства показана на рис. 16. В плоскук измерительную камеру, изготовленную из коррозионностойкой стали, с двух сторон подается вспомогательный газ. Левая поло­вина измерительной камеры находится между полюсами электро­магнита (поле меняется с частотой 8 1/3 Гц). Вспомогательный гаг под давлением в несколько бар поступает в систему через диа­фрагму (с отверстием, выполненным при помощи луча лазера) выполняющую роль дросселя. При наличии в анализируемом газе кислорода возникающие между двумя половинами измеритель­ной камеры периодические импульсы перепада давления чере; изогнутую в форме восьмерки трубку (для компенсации изменений потока, вызванных инерционными силами при импульсном движении газа) передаются детектору расхода. Малейшие пульсации потока детектор преобразует с большой точностью в электрически! сигналы. Он состоит из двух никелевых сеток, имеющих форм} меандров, установленных поперек потока очень близко друг о1 друга. Между обогреваемыми током сетками существует тепловая связь, сильно зависящая от расхода газа. При появлении пульсирующего потока газа электрические сопротивления сеток рассогласовываются и измеряются при помощи моста сопротивлений Малая инерционность детектора позволяет получать очень низ кие значения времени установления показаний (выход на 90 % ное показание <1 с). Можно, в частности, зафиксировать скачке образные изменения концентрации кислорода. Это особенно важн для измерений в медицине, где этот детектор и был первоначально использован. До настоящего времени минимальный диапазо измерения составляет 0—2 % О2.

Дальнейшая разработка фирмы Siemens — газоанализато Оху mat 3, имеющий улучшенную электронную схему (например более благоприятное отношение сигнал/шум) и противоударну! защиту за счет применения двойного корпуса, разделенного на аналитический и электронный отсеки; минимальный диапазон измерения 0—0,5 % О2. Соответствующим выбором вспомогатель­ного газа можно получить диапазон измерения с подавлением нуля. Погрешность измерения составляет ±2 % от диапазона измерения. Выходным сигналом является постоянный ток величиной О—20 или 4—20 мА или напряжение 0/2/—10В; расход вспомога­тельного газа от 3 до 10 мл/мин. При применении вспомогатель­ного насоса для отбора пробы газа необходимо обеспечить гаше­ние пульсации расхода пробы.

Измерительные камеры газоанализатора Oxymat—2 и Охуmat—3 изготовлены из листов коррозионностойкой стали VA—4 и сварены при помощи электронного луча; однако при анализе коррозионноактивных газов необходимы меры, указанные при рассмотрении газоанализатора Oxygor.

Для определения кислорода в агрессивных газах на приборе Oxymat разработана измерительная камера из тантала. Взрывозащищенные модели приборов Oxymat—2 и Oxymat—3 выполнены в герметичном исполнении. Так же как и другие анализаторы кис­лорода, эти приборы неприменимы для анализа взрывоопасных смесей газов.

Рис. 17. Схема газоанализатора Oxytest фирма Hartmann und Braun: 1 — анализируемый газ; 2 — вспомога­тельный газ; 3 — отсос газа; 4 — измери­тельная камера; 5 — мембранный конден­сатор; 6 — шкала прибора

Быстродействующий газоанализатор на кислород также работает с помощью вспомогательного газа. Электромагнит при­бора возбуждается переменным током (50 Гц). Результирующее переменное давление преобразуется в электрический сигнал кон­денсаторным микрофоном. Схема этого газоанализатора показана на рис. 17.

В узкий зазор между полюсами электромагнита вводится с од­ной стороны анализируемый, с другой — сравнительный газы. Оба газа отсасываются вместе через выпускное отверстие между магнитными полюсами перпендикулярно плоскости полюсного наконечника. В области неоднородного магнитного поля в при­сутствии кислорода возникает давление, которое через канал передается в одну половину камеры конденсаторного микрофона. При одинаковой концентрации кислорода в анализируемом и срав­нительном газах возникающие под действием переменного маг­нитного поля импульсы давления имеют одинаковую амплитуду и взаимно компенсируются. При изменении концентрации кисло­рода в одном из газов мембрана начинает отклоняться и на усили­теле возникает напряжение, пропорциональное ее отклонению.

Фирма Hartmann und Braun с 1970 г. выпускала быстро дейст­вующий газоанализатор Oxytest S, действовавший по изложенному выше принципу. Выпуск этого прибора прекращен в связи с на­чалом производства прибора Magnos 4G. Линейность градуировки во всем диапазоне, независимость показаний от неизмеряемых компонентов анализируемого газа и -особенно крайне малое за­паздывание делают этот газоанализатор особенно пригодным для использования в медицине, например для контроля процесса ды­хания. Длительность цикла дыхания иногда может 'быть меньше 1 с. Для точного контроля дыхания запаздывание должно составлять ~0,1 с. Газоанализатор Oxytest S, имеющий время выхода на 90 %-ное показание 150 мс и объем камеры 20 см3, хорошо справ­ляется с этой задачей. Конструкция прибора и выбор диапазонов измерения рассчитаны на его использование в медицине. В ка­честве сравнительного газа обычно можно использовать воздух, что* полностью устраняет затруднения, связанные с выбором срав­нительного газа.

Принцип действия прибора Magnos 4G фирмы Hartmann und Braun такой же, как и показанного на рис. 17 прибора Oxytest S. Конструктивные улучшения и использование совре­менных электронных устройств позволили заменить прибор Oxy­test S. Система распределения газовых потоков обеспечивает не­зависимость выходного сигнала от расхода газа. Аналитическая и электронная части прибора раздельно размещены в стандартном 19-дюймовом двухкамерном корпусе. Прибор предназначен для работы в промышленных условиях. Наличие переключаемых диа­пазонов измерения 0—2/5/10/25 % (объемн.) О2 обеспечивает воз­можность калибровки по воздуху, причем сдвиг нуля при пере­ключениях диапазонов измерений не превышает 0,5 % соответ­ствующего диапазона.

Пневматический газоанализатор, разработанный Люфтом , работает без вспомогательного газа; в приборе использован вра­щающийся магнит и конденсаторный микрофон, аналогичный при­меняемым в инфракрасных газоанализаторах. Однако подробные сведения о нем здесь не приведены, так как он не нашел практиче­ского применения в ФРГ.

Использование полупроводниковых чувствительных элементов

Обратимая хемосорбция активных газов на поверхности оксидов полупроводниковых металлов и халькогенидов изменяет их про­водимость. На этом явлении основана работа газочувствтель­ных элементов. Особенно чувствительны в этом отношении оксиды полупроводниковых металлов.

Изменения проводимости в полупроводниковых элементах обусловлены прежде всего изменением концентрации электронов в зоне проводимости (или дырок в валентной зоне) в результате обмена зарядами с адсорбированными частицами газовой фазы. Именно поэтому материалы на основе полупроводниковых элемен­тов представляют интерес для изготовления на их основе газочувствительных элементов.