Смекни!
smekni.com

Контроль качества сгорания топлива в методических нагревательных печах (стр. 16 из 20)

Модуляционный метод формирования аналитического сигнала состоит в том, что различными способами добиваются синусоидального изменения интенсивности излуче­ния попадающего на приемник излучения. Такой модуляции можно достичь как с помо­щью специальных устройств, помещаемых перед приемни­ком излучения, так и путем изменения частоты зондирующего излучения или частоты поглощения определяемых атомов или молекул.

В первом случае измеряемый сигнал зависит только от той части зондирующего излучения, которая соответствует (коррелирует) спектру поглощения определяемого ком­понента газовой смеси. Эта часть излучения выделяется специальными устройствами (коррели­рующими элементами), пропускающими излучение только на определенных участках спектра, соответствующих структуре спектра поглощения определяемых атомов или мо­лекул.

Такие элементы, помещенные перед приемником излучения, обеспечивают модуля­цию амплитуды регистрируемого сигнала. В сочетании с синхронным детектированием, т. е. регистрацией сигнала в момент, когда коррелирующий элемент выделяет только спектр поглощения определяемого компонента, корреля­ционные методики позволяют су­щественно ослабить влияние нарезультаты определения любых примесей, спектр поглоще­ния которых мало коррелирует по структуре с анализируемым.

В качестве коррелирующих элементов можно использовать специальные пластинки (маски) с чередующимися прозрачными и не прозрачными зонами, повторяющими положе­ние линий по­глощения в плоскости изображения спектра на выходе спектраль­ного прибора. Модуляция амплитуды сигнала в этом случае происходит за счет колебания маски в плоскости изображения спектра поглощения. Недостаток такой методики модуляции сигнала необходимость использования диспергирующей аппаратуры с хорошим разрешением и создания целого набора масок для анализа различных газов.

Модуляция амплитуды зондирующего излучения может про­изводиться также и с по­мощью специальных кювет с некоторым количеством определяемого газа за счет изменения в них давле­ния. В отличие от предыдущей схемы эта более универ­сальна, так как при смене аналитической задачи необходимо лишь заполнить кювету соот­ветствующим газом. Однако существенным ее недостатком является малая глубина моду­ляции амплитуды сигнала.

По-видимому, более перспективно использование в качестве коррелирующего эле­мента сканирующего интерферометра Фаб­ри-Перо, постоянная которого может быть вы­брана в со структурой полосы поглощения определяемого компо­нента газовой смеси. Длина волны максимума пропускания интерферометра сканируется за счет изменения положения одного из зеркал, а переход к определению нового компонента изме­нением базы интерфе­рометра.

Иной принцип заложен в методах, основанных на использова­нии явлений смещения частоты поглощения молекулами или частоты излучения источников при помещении их в магнитное (Зееман-эффект) или электрическое (Штарк-эффект) поля. В первом случае ис­пользуется явление расщепления энергетических уровней поглощающих или излучающих атомов или молекул во внешнем магнитном поле на три (нормальный Зееман-эффект) или большее число (аномальный Зееман-эффект) компонент. Если источник излу­чения или абсорбционная кювета помещена в переменное магнитное поле, то наблюдается соответствующее сканирование частоты зондирующего излучения относительно линии по­глощения или сканирование частоты линии поглощения относительно частоты зондирую­щего излучения. В этих случаях сигнал приемника модулируется по амплитуде с частотой изме­нения напряженности магнитного поля. Как правило, в перемен­ное магнитное поле помещают источник излучения , реже - абсорбционную кювету .

Расщепление линий поглощения в электрическом поле (Штарк-эффект) используют для определения полярных молекул, например, аммиака или диоксида серы . При этом в переменное электрическое поле помещают абсорбционную кюве­ту с анализируемым газом.

Остановимся на специальных способах обработки регистриру­емого сигнала.

Дифференциальный метод обработки аналитического сигнала - метод производной - основан на измерении первой или второй производной от меняющегося по гармоническому закону сигнала приемника. Такая методика обработки аналитического сигнала позволяет выделять слабые линии поглощения на сильном фоне и тем самым улучшать аналитические характеристики метода за счет увеличения отношения полезного сигнала к шуму. Так, в работе [7] показаны сравнительные возможности различных методик обработки регистрируемого сигнала: большие концентрации определяли методом прямого детектирования, средние по первой, а малые до 10-7-10-8% (мол.) по второй производным.

Интегральный метод обработки аналитического сигналаметодучета мешающих на­ложений основан на исследовании характера и интенсивности спектров поглощения анали­зируемых газов в некоторой области длин волн и учете их взаимных наложений. Такая методика обработки сигналов весьма трудоемка и практически невозможна без применения ЭВМ. Наиболее простой способ при анализе сложных технологических газов, где наложения учитывали путем решения системы уравнений, характеризующих вклад в поглощение на трех регистрируемых длинах волн от основных компонентов газовой смеси.

Рассмотренные нами методы обработки регистрируемого сигнала, наряду с прямым детектированием изменения интенсивности зондирующего излучения, прошедшего поглощающую газовую среду, широко используют в различных схемах абсорбционных газоанализаторов.

Аппаратура

Важнейшие элементы абсорбционных газоанализа­торов это источники и приемники зондирующего излучения; их мы и рассмот­рим наиболее подробно. Оптические схемы газоанализаторов довольно просты и мы остановимся лишь на общем описании некоторых из них.

Источники зондирующего излучения

Для решения разнообразных задач в аб­сорбционных газоанализаторах используют различные источни­ки зондирующего излучения: газоразрядные, тепловые, когерент­ные. По характеру излучения их можно разделить на источники сплошного, линейчатого и монохроматического излучения в УФ-, видимом и ИК- спектральном диапазонах.

Тепловые источники характеризуются сплошным спектром излучения в ИК диапазоне, высокой стабильностью излучаемой мощности, малым потреблением энергии и большими сроками эксплуатации. Используют несколько разновидностей таких источников:

глобар, представляющий собой стержень из карбида кремния; рабочая температура ≈1300 К;

штифт Нернста, представляющий собой стержень, содержа-* щий смесь оксидов циркония, тория, иттрия; обычная рабочая температура ≈1700 К;

лампы накаливания с вольфрамовой или нихромовой спи­ралью, нагретой до 1000-1100 К, излучающие в видимой и ближней ИК-областях спектра .

Газоразрядные источники характеризуются линейчатым спек­тром излучения в УФ-, видимом и ближнем ИК-диапазоне длин волн, а также сплошным спектром в УФ-области спектра. К источникам этого типа относятся:

водородные или дейтериевые лампы, представляющие собой стеклянные колбы с кварцевыми окошками, заполненные газом при давлении в несколько сотен Па; лампы являются источниками сплошного спектра в видимой и УФ (до200 нм)-областях спектра;

высокочастотные безэлектродные лампы, заполненные инертным газом при давлениях в несколько сотых долей Па и вещест­вом-источником атомных паров; лампы являются источниками линейчатого спектра излучения в видимой и УФ-об­ласти;

ртутные газоразрядные лампы низкого, высокого или сверх­высокого давления, представляющие собой кварцевые трубки с впаянными электродами и заполненные аргоном и ртутью;

лампы являются источниками линейчатого спектра излуче­ния наиболее интенсивные линии которого имеют длины волн: 253,7; 313; 314; 365,5; 404,7; 435,8; 546,1; 577 и 579,1 нм ;

лампы с полным катодом , являющиеся источ­никами линейчатого спектра излучения, характер которого опре­деляется элементами, входящими в состав катода или напылен­ного на его поверхность материала; атомы, образовавшиеся при испарении материала нагретого катода или вследствие распыле­ния его поверхностных слоев под воздействием ионной бомбар­дировки, возбуждаются в тлеющем разряде постоянного тока в буферном газе; эти лампы используют при анализе воздуха на содержание металлических примесей в виде металлоорганических соединений, аэрозолей и паров (например ртути).

Монохроматические источники - оптические квантовые гене­раторы, излучающие отдельные линии в видимой и ИК- областях спектра в режиме импульсной или непрерывной генерации. Ис­точники такого типа позволяют перестраивать частоту излучения либо непрерывно в некотором диапазоне длин волн, либо дис­кретно на нескольких фиксированных частотах:

газоразрядный СО-лазер с генерацией излучения в области 5-6 мкм мощностью несколько мВт ;

газоразрядный He-Ne-лазер с генерацией излучения, перестра­иваемого дискретно на длинах волн 3,39; 4,22; 5,4 мкм, мощ­ностью 0,5-5 мВт ;

лазеры на красителе (ЛК), излучающие на длинах волн от 0,4 до 0,6 мкм ;

светодиоды на основе твердых растворов полупроводниковых соединений типа InGaAs и InAsSbP, излучающие в диапазоне 2,6-4,7 мкм;, мощность непрерывного излучения порядка сотен мкВт, а импульсного-нескольких мВт ;

полупроводниковые диодные лазеры типа PbS1-xSex и Pb1-xSnxSe, генерирующие в диапазоне 3-30 мкм; лазеры обеспе­чивают непрерывную перестройку узкой линии генерации (

) 3a счет изменения тока питания и температуры полупроводникового элемента в диапазоне до 1000см-1 .