Смекни!
smekni.com

Применение УВМ при автоматизации сортовых прокатов (стр. 7 из 17)

Замерив интервалы времени

и
и разделив их один на другой, можно найти искомую длину
- Таким образом, при использовании данного метода главной задачей прибора является деление друг на друга временных интервалов.

Деление временных интервалов можно произвести при помощи электронно-вычислительных машин или электрических схем с конденсаторами. Применение электронно-вычислительных машин рекомендуется, если требуется очень высокая точность или операцию деления можно передать счетно-решающему устройству, обслуживающему стан по ряду операций. В других случаях целесообразнее применять метод, использующий схемы с конденсаторами, сущность которого заключается в следующем. При делении интервал времени

преобразуется в пропорциональное напряжение
, где

- коэффициент пропорциональности. Гиперболическая функция времени
аппроксимируется выражением

где А, N,

- постоянные величины, которые выбирают из условия наилучшей аппроксимации. Тогда

Это выражение можно реализовать с помощью схемы, представленной на рис. 122. Два последовательно соединенных конденсатора

и
, отношение емкостей которых равно
заряжаются постоянным током
в течение времени
до суммарного напряжения
. Напряжение на конденсаторе
будет равно
, а на
. Во время зарядки конденсаторов ключ K разомкнут. По окончании заряда ключ К замыкается на время
. Конденсатор
разряжается по экспоненциальному закону на сопротивление R. с постоянной времени
. Через время
напряжение на конденсаторе будет равно

а суммарное напряжение на обоих конденсаторах

при этом величина

пропорциональна
На рис. 123 показана блок-схема прибора для измерения длины проката, использующая для деления временных интервалов вышеописанный метод. Основные узлы прибора: линейный интегратор, представляющий собой стабилизатор тока с последовательно включенными емкостями, и разрядное устройство. При помощи интегратора время
, преобразуется в напряжение
, а при

помощи разрядного устройства реализуется уравнение (187).

Схема работает следующим образом. При прохождении передним концом трубы фотодатчика 2 возникает импульс, который поступает на ключ 5 и открывает интегратор 6. Через время

задний конец трубы выйдет из поля зрения фотодатчика 1 и возникший при этом импульс поступит на ключ 5 и интегратор закроется. Одновременно ключ 4 откроет разрядное устройство 7. Когда через время
задний конец трубы выйдет из поля зрения фотодатчика 3, возникший импульс закроет разрядное устройство. Напряжение
, которое останется к этому моменту на емкостях интегратора, будет пропорционально
. После окончания разряда открывается ключ 8 и напряжение
. передается в выходное устройство 9. Данный метод измерения используется, например, для измерения длины горячих труб в пределах 7—8 м на станах печной сварки. Скорость передвижения труб: 3—8 м/с. Ошибка измерения при этом не более
мм.

2.2.3 Фотоимпульсные измерители длины с прямым счетом импульсов.

Указанные измерители характеризуются тем, что датчики, установленные на линии продольного движения проката, при прохождении мимо них измеряемого изделия выдают в измерительную систему импульсы, равные определенной фиксированной длине. Простейшая схема такого устройства показана на рис. 124,а. Передний конец изделия 10, выходя из валков, попадает в поле зрения первого фотодатчика, а за-

тем, продвигаясь вперед по рольгангу, изделие

Рис.124. Система для измерения длинны изделий по фотоимпульсному методу с прямым счётом импульсов:

а – система только с грубым отсчётом; б – система с грубым и точным отсчётами; 1-7 – фотодатчики грубого отсчёта;8 – счётчик; 9 – фотодатчики точного отсчёта; 10 – изделие.

последовательно проходит мимо фотодатчиков 2, 3 и т. д. Импульсы от фотодатчиков поступают в счетчик 8 и суммируются. Каждый импульс соответствует расстоянию L. Таким образом, длина изделия будет равна L (п—1), где п-—число засвеченных фотоэлементов. Счет импульсов прекращается, когда задний конец изделия выйдет из поля зрения фотодатчика 1. Точность измерения таким методом зависит от шага L установки фотодатчиков. Для увеличения точности измерения с одновременным снижением числа фотодатчиков схему измерения строят по принципу грубого и точного отсчётов. В этом случае в отличие- от предыдущего, где отсчет ведется одним концом изделия, а другой дает сигнал об окончании счета, отсчет ведется обоими концами изделия (рис. 124,6). Грубый отсчет ведется по переднему концу изделия, показаний конец изделия не выйдет из поля зрения фотодатчика 1. Точный отсчет изделия ведется по заднему концу изделия с момента выхода заднего конца из поля зрения фотодатчика 1 до момента засветки следующего фотодатчика грубого отсчета (на рис. 124,б это фотодатчик 7). Длина полосы при этом равна

где l—шаг установки фотодатчиков точного отсчета;

т — количество засвеченных датчиков точного отсчета.

К изделиям длины изделий с прямым счетом импульсов относятся и приборы с нанесением магнитных, тепловых, радиоактивных, люминесцентных и других меток. Каждая метка имеет определенную цену длины изделия. При прохождении мимо регистратора эти метки считаются измерительной схемой (рис. 125). При прохождении передним концом фотодатчика 1 подается команда на головку записывающего прибора 8 для нанесения метки в изделие. При дальнейшем движении метка проходит мимо приемника 4, который считает метки и дает команду прибору 3 на нанесение следующей метки.