Смекни!
smekni.com

Технология автоматизация литейных процессов (стр. 8 из 20)

Учитывая выше написанное, можно сделать вывод о сложности трудности проведения процесса раскисления и легирования, который заключается в выборе вида раскислителя, его массы, а также условий и времени подави раскислителя в металл. Даже небольшие отклонения процесса выплавки стали могут вызвать сильное окисление легирующего элемента-раскислителя (угар) либо чрезмерно высокое его содержание в готовой стали, что плохо для свойств стали.

2.2 Разработка математической модели для целей исследования технологии

В качестве модели процесса раскисления и легирования возьмем модель расчета масс ферросплавов, подаваемых на предстоящую плавку, с учетом прогнозирования угоревших масс элементов в них по данным предыдущих плавок. Полученные в результате массы ферросплавов подаются на текущею плавку и обеспечивают заданный химический состав готовой стали. Модель можно представит в следующем виде (рис.3).

Рисунок 3 - Блок-схема модели расчета масс ферросплавов

Изображенная блок-схема модели расчета масс определяет те массы ферросплавов, которые и являются рекомендацией на предстоящую плавку.

Для каждой марки стали определена базовая угоревшая масса элементов (марганца, кремния), то есть средняя величина угара элемента в условиях раскисления металла в данном цехе. Марки стали, имеющие близкие значения базовых угоревших масс элемента, объединены в группы. Различие угоревших масс элементов по группам сталей свидетельствует о том, что предыстория плавки может быть непрерывной только внутри групп, а при переходах от одной группы сталей к другой она прерывается. Для сохранения непрерывности предыстории плавки с целью максимального извлечения информации из предыдущих плавок используется понятие эквивалентной окисленности плавки, которая рассчитывается по формуле:

(1)

где O(i) – полная окисленность i-ой плавки, %;

- остаточная базовая окисленность для группы сталей, к которой принадлежит i-ая плавка, %;

М1уг(i) – угоревшая масса элемента 1, кг;

1 – порядковый номер элемента (марганца, кремния);

D(i) – коэффициент пересчета угоревших масс элементов в эквивалентную окисленность, отн.ед.;

n – количество элементов (марганец, кремний).

Эквивалентная окисленность плавки выравнивается по всем плавкам независимо от группы сталей и прогнозируется для предстоящей плавки при расчете расхода ферросплавов. Расчет эквивалентной окисленности стали на предстоящую плавку производится по формуле (2):

где Об(i) – прогнозируемая базовая эквивалентная окисленность, %;

Cn(i), Mnn(i) – прогноз экспресс-анализа стали, %;

C(i), Mn(i), Si(i) – прогноз маркировочного анализа, %;

tсл(i), tд(i) – прогноз времени слива и додувки, с;

BC, BMn, BSi – коэффициенты, определяющие базовые значения углерода, марганца и кремния готовой стали, %;

б – индекс базовых значений;

i – плавка, на которую ведется расчет ферросплавов.

Угоревшие массы элементов, используемые вместо коэффициента угара, вычисляются по каждой раскисленной плавки после поступления данных химического анализа готовой стали с учетом фактических доз ферросплавов по формуле:

(3)

где Мкфер(i) – расход ферросплава K, фактически дозированного на i-ой плавке, кг;

Llk(i) – содержание элемента l в ферросплаве К, %;

l(i) – содержание элемента 1 в готовой стали, %;

ln(i) – содержание элемента l в стали на повалке, %;

Мст – масса стали, кг.

Угоревшие массы элементов выравниваются внутри группы сталей и прогнозируются для предстоящей плавки при расчете расхода ферросплавов. Расчет угоревших масс элементов на предстоящую плавку производится по формуле:

(4)

где Мбуг(i) – прогнозируемая масса l-ого элемента, кг;

Cn(i), Mnn(i) – прогноз экспресс-анализа стали, %;

C(i), Mn(i), Si(i) – прогноз маркировочного анализа, %;

tсл(i), tд(i) – прогноз времени слива и додувки, с;

О(i) – рассчитанная на предстоящую плавку эквивалентная окисленность, %;

i-sr – плавка, ближайшая по группе.

Для определения и прогнозирования влияния неконтролируемых факторов (ошибка прогноза времени слива, порядок и момент присадки ферросплавов, гранулометрический состав материала, состояние ковша) угоревшие массы элементов и эквивалентная окисленность плавки пересчитываются на базовую марку стали, то есть условную марку, среднюю по своим параметрам для ККЦ-1. Приведение к базовым условиям эквивалентной окисленности производится по формуле:

(5

где О(i-s) – окисленность, вычисленная по формуле (1), %;

Cn, Mnn – прогноз экспресс-анализа стали, %;

C, Mn, Si – анализ готовой стали, %;

tсл(i), tд(i) – прогноз времени слива и додувки, с;

BC, BMn, BSi – коэффициенты, определяющие базовые значения углерода, марганца и кремния готовой стали, %;

а0, b0, К0сл, К0д – коэффициенты пересчета, отн. ед.;

б – индекс базовых значений;

(i-s) – плавка, на которую пришел химический анализ.

Угоревшие массы элементов приводятся к базовым условиям по формуле:

(6)

где Мlуг(i-s) – прогнозируемая угревшая масса l-ого элмемнта, кг;

Cn, Mnn – прогноз экспресс-анализа стали, %;

C, Mn, Si – анализ готовой стали, %;

tсл(i), tд(i) – прогноз времени слива и додувки, с;

al, bl, Klсл, Klд – коэффициенты пересчета, отн. ед.;

i – плавка, на которую ведется расчет ферросплавов;

i-sr – плавка, ближайшая по группе;

BC, BMn, BSi – коэффициенты, определяющие базовые значения углерода, марганца и кремния готовой стали, %;

l – индекс элемента (Mn, Si).

Базовые значения эквивалентной окисленности плавок и угоревших масс элементов выравниваются (сглаживаются с помощью релейно-экспоненциального фильтра) и прогнозируются на предстоящую плавку. Эквивалентная окисленность сглаживается и прогнозируется внутри каждой группы сталей и непрерывно по всем плавкам. Угоревшие массы элементов, прогнозируемые для базовых условий, пересчитываются на фактические условия текущей плавки по формуле (4).

Угоревшая масса элемента по условиям текущей плавки рассчитывается по формуле:

(7)

где Мэл(Ф) – масса элемента в ферросплаве Ф, т;

(8)

Эф – содержание элемента в ферросплаве Ф, %;

М(Ф) – масса ферросплава, используемого в текущей плавки, т;

Мэлусв – усвоившая масса элемента, т;

(9)

Х – содержание элемента в химическом анализе ковшевых проб, %;

Э – содержание элемента в экспресс-анализе стали, %;

С – масса садки, т.

Коэффициент угара элемента определяется по формуле:

(10)

а коэффициент усвоения элемента – по формуле:

(11)

причем Кэлуг + Кэлусв = 1.

Результаты расчета угоревших масс и коэффициентов угара и усвоения элементов по условиям плавок 320719-320777 представлены в табл. 5.1 приложения 5. Последовательности изменения угоревших масс и коэффициентов угара и усвоения элементов, а также параметров плавки в зависимости от номера плавки изображены на рис.5.1-5.10. Зависимости угоревших масс и коэффициентов угара элементов от параметров плавки представлены ни рис. 5.11-5.38, а взаимосвязь коэффициентов угара и усвоения и угоревших масс элементов – на рис.5.39-5.42 приложения 5.

Корреляция на графиках показывает, как тот или иной параметр плавки влияет на коэффициент угара и угоревшую массу элемента. Например, среднее положение фурмы практически не оказывает влияние на угар элемента, а содержание углерода С, наоборот, оказывает влияние. Большей частью высокий коэффициент корреляции имеют графики, построенные для кремния, поскольку в процессе плавки он практически полностью переходит в шлак.