Учитывая выше написанное, можно сделать вывод о сложности трудности проведения процесса раскисления и легирования, который заключается в выборе вида раскислителя, его массы, а также условий и времени подави раскислителя в металл. Даже небольшие отклонения процесса выплавки стали могут вызвать сильное окисление легирующего элемента-раскислителя (угар) либо чрезмерно высокое его содержание в готовой стали, что плохо для свойств стали.
В качестве модели процесса раскисления и легирования возьмем модель расчета масс ферросплавов, подаваемых на предстоящую плавку, с учетом прогнозирования угоревших масс элементов в них по данным предыдущих плавок. Полученные в результате массы ферросплавов подаются на текущею плавку и обеспечивают заданный химический состав готовой стали. Модель можно представит в следующем виде (рис.3).
Рисунок 3 - Блок-схема модели расчета масс ферросплавов
Изображенная блок-схема модели расчета масс определяет те массы ферросплавов, которые и являются рекомендацией на предстоящую плавку.
Для каждой марки стали определена базовая угоревшая масса элементов (марганца, кремния), то есть средняя величина угара элемента в условиях раскисления металла в данном цехе. Марки стали, имеющие близкие значения базовых угоревших масс элемента, объединены в группы. Различие угоревших масс элементов по группам сталей свидетельствует о том, что предыстория плавки может быть непрерывной только внутри групп, а при переходах от одной группы сталей к другой она прерывается. Для сохранения непрерывности предыстории плавки с целью максимального извлечения информации из предыдущих плавок используется понятие эквивалентной окисленности плавки, которая рассчитывается по формуле:
(1)где O(i) – полная окисленность i-ой плавки, %;
- остаточная базовая окисленность для группы сталей, к которой принадлежит i-ая плавка, %;М1уг(i) – угоревшая масса элемента 1, кг;
1 – порядковый номер элемента (марганца, кремния);
D(i) – коэффициент пересчета угоревших масс элементов в эквивалентную окисленность, отн.ед.;
n – количество элементов (марганец, кремний).
Эквивалентная окисленность плавки выравнивается по всем плавкам независимо от группы сталей и прогнозируется для предстоящей плавки при расчете расхода ферросплавов. Расчет эквивалентной окисленности стали на предстоящую плавку производится по формуле (2):
где Об(i) – прогнозируемая базовая эквивалентная окисленность, %;
Cn(i), Mnn(i) – прогноз экспресс-анализа стали, %;
C(i), Mn(i), Si(i) – прогноз маркировочного анализа, %;
tсл(i), tд(i) – прогноз времени слива и додувки, с;
BC, BMn, BSi – коэффициенты, определяющие базовые значения углерода, марганца и кремния готовой стали, %;
б – индекс базовых значений;
i – плавка, на которую ведется расчет ферросплавов.
Угоревшие массы элементов, используемые вместо коэффициента угара, вычисляются по каждой раскисленной плавки после поступления данных химического анализа готовой стали с учетом фактических доз ферросплавов по формуле:
(3)где Мкфер(i) – расход ферросплава K, фактически дозированного на i-ой плавке, кг;
Llk(i) – содержание элемента l в ферросплаве К, %;
l(i) – содержание элемента 1 в готовой стали, %;
ln(i) – содержание элемента l в стали на повалке, %;
Мст – масса стали, кг.
Угоревшие массы элементов выравниваются внутри группы сталей и прогнозируются для предстоящей плавки при расчете расхода ферросплавов. Расчет угоревших масс элементов на предстоящую плавку производится по формуле:
(4)где Мбуг(i) – прогнозируемая масса l-ого элемента, кг;
Cn(i), Mnn(i) – прогноз экспресс-анализа стали, %;
C(i), Mn(i), Si(i) – прогноз маркировочного анализа, %;
tсл(i), tд(i) – прогноз времени слива и додувки, с;
О(i) – рассчитанная на предстоящую плавку эквивалентная окисленность, %;
i-sr – плавка, ближайшая по группе.
Для определения и прогнозирования влияния неконтролируемых факторов (ошибка прогноза времени слива, порядок и момент присадки ферросплавов, гранулометрический состав материала, состояние ковша) угоревшие массы элементов и эквивалентная окисленность плавки пересчитываются на базовую марку стали, то есть условную марку, среднюю по своим параметрам для ККЦ-1. Приведение к базовым условиям эквивалентной окисленности производится по формуле:
(5где О(i-s) – окисленность, вычисленная по формуле (1), %;
Cn, Mnn – прогноз экспресс-анализа стали, %;
C, Mn, Si – анализ готовой стали, %;
tсл(i), tд(i) – прогноз времени слива и додувки, с;
BC, BMn, BSi – коэффициенты, определяющие базовые значения углерода, марганца и кремния готовой стали, %;
а0, b0, К0сл, К0д – коэффициенты пересчета, отн. ед.;
б – индекс базовых значений;
(i-s) – плавка, на которую пришел химический анализ.
Угоревшие массы элементов приводятся к базовым условиям по формуле:
(6)где Мlуг(i-s) – прогнозируемая угревшая масса l-ого элмемнта, кг;
Cn, Mnn – прогноз экспресс-анализа стали, %;
C, Mn, Si – анализ готовой стали, %;
tсл(i), tд(i) – прогноз времени слива и додувки, с;
al, bl, Klсл, Klд – коэффициенты пересчета, отн. ед.;
i – плавка, на которую ведется расчет ферросплавов;
i-sr – плавка, ближайшая по группе;
BC, BMn, BSi – коэффициенты, определяющие базовые значения углерода, марганца и кремния готовой стали, %;
l – индекс элемента (Mn, Si).
Базовые значения эквивалентной окисленности плавок и угоревших масс элементов выравниваются (сглаживаются с помощью релейно-экспоненциального фильтра) и прогнозируются на предстоящую плавку. Эквивалентная окисленность сглаживается и прогнозируется внутри каждой группы сталей и непрерывно по всем плавкам. Угоревшие массы элементов, прогнозируемые для базовых условий, пересчитываются на фактические условия текущей плавки по формуле (4).
Угоревшая масса элемента по условиям текущей плавки рассчитывается по формуле:
(7)где Мэл(Ф) – масса элемента в ферросплаве Ф, т;
(8)Эф – содержание элемента в ферросплаве Ф, %;
М(Ф) – масса ферросплава, используемого в текущей плавки, т;
Мэлусв – усвоившая масса элемента, т;
(9)Х – содержание элемента в химическом анализе ковшевых проб, %;
Э – содержание элемента в экспресс-анализе стали, %;
С – масса садки, т.
Коэффициент угара элемента определяется по формуле:
(10)а коэффициент усвоения элемента – по формуле:
(11)причем Кэлуг + Кэлусв = 1.
Результаты расчета угоревших масс и коэффициентов угара и усвоения элементов по условиям плавок 320719-320777 представлены в табл. 5.1 приложения 5. Последовательности изменения угоревших масс и коэффициентов угара и усвоения элементов, а также параметров плавки в зависимости от номера плавки изображены на рис.5.1-5.10. Зависимости угоревших масс и коэффициентов угара элементов от параметров плавки представлены ни рис. 5.11-5.38, а взаимосвязь коэффициентов угара и усвоения и угоревших масс элементов – на рис.5.39-5.42 приложения 5.
Корреляция на графиках показывает, как тот или иной параметр плавки влияет на коэффициент угара и угоревшую массу элемента. Например, среднее положение фурмы практически не оказывает влияние на угар элемента, а содержание углерода С, наоборот, оказывает влияние. Большей частью высокий коэффициент корреляции имеют графики, построенные для кремния, поскольку в процессе плавки он практически полностью переходит в шлак.