Смекни!
smekni.com

Апология Бесконечности (стр. 2 из 4)

определяющее количество элементов в бесконечном множестве. А такое доказанное Кантором положение, как "число точек отрезка равно числу точек квадрата", настолько сильно повлияло на математику, что заставило в топологии отказаться от общепринятого во всем естествознании параметрического определения размерности пространств и принять на вооружение индуктивное определение размерности, которое определяет континуумы любых размерностей как множества. Все эти парадоксы никак не согласуются с классической логикой. в теории множеств с классической логикой согласуется как раз только одно – диагональный метод Кантора, поскольку в нем не задействовано противоречивое определение бесконечного множества на основе принципа "часть может быть равна целому". Поэтому если и есть основания говорить об ошибке Георга Кантора, то не относительно диагонального метода [7], а относительно введенного им в теорию множеств принципа "часть может быть равна целому", который находится в вопиющем противоречии с классической логикой. В [11] предложено отказаться в теории бесконечных множеств от принципа "часть может быть равна целому" и соответственно от определения бесконечного множества по Дедекинду. В результате в диагональном методе доказательства отношения 2ω>ω уже нельзя будет добавить в предполагаемый пересчет множества 2ω новый, "диагональный", элемент, так как это добавление согласно принципу классической логики "часть не может быть равна целому" изменит предполагаемый пересчет и превратит его в новое множество, неэквивалентное предполагаемому пересчету. Диагональный метод Кантора, таким образом, останется непоколебимым. Уйдут также из теории множеств и выше перечисленные противоречия, а в бесконечном будут действовать те же законы классической логики, что и в конечной области.

Интересно, конечно, задаться вопросом: как и почему крупные математики доказывали и передоказывали теорему Кантора и не замечали противоречия между определением бесконечного множества и диагональным методом? Нам кажется, чтопри ее доказательстве, в силу грандиозности последствий теоремы "2M>M", на время или "забывали" о принципе "часть может быть равна целому", или подсознательно подчинялись принципу "часть не может быть равна целому" и потому останавливались на том самом месте диагонального метода, где надо было проверить возможность добавления нового элемента к проверяемому множеству и повторного построения другого нового элемента и т.д. скорее всего, этим и можно объяснить ситуацию с диагональным методом. Здесь уместно вспомнить Б. Рассела и спросить: почему Рассел вместо того, чтобы разобраться в сущности оснований теории множеств и их противоречий, выставлял на передний план следствия из обнаруженных им парадоксов? Почему? Нам кажется потому, что критиковать и разрушать всегда легче, чем созидать, что деконструировать, ломать легче, чем конструировать. Аналогичным образом обстоят дела и в случае последних антиканторовских выступлений А.А. Зенкина.

В его статье [9] на основе ошибочных умозаключений также дискредитируется канторовская теория множеств. На наш взгляд, в ней имеет место самое простое смешение конечного с бесконечным [9 с.80-81]. Действительно, там рассматриваются две знаковые конструкции (5) и (6). Знаковая конструкция (5) – это соответствующая запись натурального ряда:

1, 2, 3, ..., w, w+1, w+2, w+3, ...,

где символ w есть произвольное конечное натуральное число. Соответственно многоточие между натуральным числом 3 и натуральным числом w означает, что на его месте находится w-4 натуральных чисел, то есть вполне определенное конечное количество w-4 натуральных чисел. Знаковая конструкция (6) – это, как говорит автор, "знаменитый канторовский ряд трансфинитных чисел":

1, 2, 3, ..., ω, ω+1, ω+2, ω+3, ..., ω×2, ω×2+1, ω×2+2, ω×2+3, ...

(На самом деле это не ряд трансфинитных чисел, а бесконечный ряд порядковых чисел. порядковые же числа включают в себя и конечные порядковые числа, и бесконечные, то есть трансфинитные, числа.) Здесь символ ω означает наименьшее трансфинитное число. Соответственно многоточия между числами 3 и ω, с одной стороны, и между числами ω+3 и ω×2, с другой стороны, говорят о том, что на месте первого многоточия находится бесконечное количество конечных натуральных чисел 4, 5, ..., а на месте второго многоточия находится такое же бесконечное количество трансфинитных чисел ω+4,ω+5,ω+6, ... сравнивая чисто визуально конструкции (5) и (6), автор делает следующий вывод (там же с.81): "таким образом мы фактически построили (доказали построением) 1–1-соответствие между множеством трансфинитных целых (порядковых) чисел Кантора (6) и множеством всех конечных натуральных чисел с сохранением порядка". Как можно установить (1–1)-соответствие, то есть взаимно однозначное соответствие, между множеством конечных чисел (конструкция (5)) и множеством порядковых чисел, включающих в себя конечные порядковые числа и трансфинитные числа (конструкция (6)), неизвестно никому. Поэтому правильно об этом сказано в комментарии к данной статье. А установить это соответствие невозможно потому, что трансфинитные числа конструкции (6) – это порядковые типы счетных вполне упорядоченных множеств, которые составляют несчетное множество [12, с. 69-70]. Автор же вопреки этому утверждает на с.81, что "Хорошо известно, что канторовский ряд (6) ... является счетным множеством", чего на самом деле нет [12, с. 69-70]. А все дело в том, что автор всеми силами пытается ниспровергнуть бесконечность и потому отождествляет конечное с бесконечным посредством надуманного им (1–1)-соответствия между конструкциями (5) и (6). Причем, автор неточен и в том, что конструкцию (6) называет "множеством трансфинитных чисел", хотя в нее входят и конечные числа (они что – тоже трансфинитные числа?!). Надо сказать больше. На с.93 в ответе автора на упомянутый комментарий снова утверждается, что конструкция (6) является счетной. Но это неверно! Конструкция (6), как минимум, имеет мощность стандартного континуума ω1=2ω, о чем говорят и П.С. Александров [12, с. 69 и теорема 18 на с. 70], и Ю.И. Манин [13, с. 105]. Это – первое. Во-вторых, автор настойчиво утверждает [9, с. 81, 93] об изоморфизме конструкций (5) и (6) с сохранением естественного порядка натурального ряда. Но этого тоже не может быть, поскольку в конструкции (5) любое натуральное число n (кроме первого) имеет предшественника n-1, а в конструкции (6) имеется бесконечно много порядковых чисел (так называемых предельных) ω,ω×2,ω×3,..., которые не имеют предшественников (см., например, у Ю.И. Манина [13, с. 104] или в математической энциклопедии [10, Т.4, статья "Порядковое число"]), вследствие чего в конструкции (6) перед предельными трансфинитами ω, ω×2, ω×3, ... есть как бы "дырки", или "черные дыры", в которых содержатся мириады счетно бесконечных множеств, а в конструкции (5) таковых нет и поэтому между конструкциями (5) и (6) никак не может быть изоморфизма, тем более, с сохранением естественного порядка натурального ряда.

таким образом, никакого (1–1)-соответствия между счетной конструкцией (5) и несчетной конструкцией (6) нет и быть не может. Соответственно нет и быть не может никакой речи о сведении бесконечного к конечному, что пытался сделать Зенкин.

Из всего вышесказанного следует только одно: ниспровержение канторовской теории множеств не имеет под собой никаких оснований. Противоречия? Да – в ней имеются противоречия, но их преодоление и устранение являются вполне посильными и реальными [11].

Перейдем ко второму названному нами концептуальному противоречию – фактическому отсутствию определения начальной актуальной бесконечности. Уязвимым в теории множеств является начальное бесконечное множество, в качестве которого выступает множество натуральных чисел N=0,1,2,3,...,n,... Оно называется также счетным множеством. Изучается оно как актуальное множество, имеющее мощность ω. Бесконечность ω есть наименьшая бесконечность, поскольку все числа, меньшие этой бесконечности, входят в множество N, которое включает в себя только конечные числа. Известным противоречием является тот факт, что множество N содержит только конечные числа – оно еще называется множеством всех конечных чисел – и, несмотря на это, постулируется, что оно содержит бесконечное количество ω конечных чисел. С точки зрения классической логики этого не может быть, поскольку количество чисел в множестве N должно совпадать с максимальным числом этого множества, то есть число ω, или по крайней мере число ω-1, должно входить в множество N. Но это не так – число ω не входит в ряд N, оно называется предельным, к которому стремятся числа натурального ряда, что записывают как:

. Причем, в этой и многих других подобных записях имеет место нечеткость в понимании символов бесконечности. Так, запись n→∞ должна пониматься просто как фраза "n стремится к бесконечности". Равенство же предела limn трансфиниту ω вполне конкретно, хотя очевидно, что ω≠∞. Не имея предшественника (число ω-1 в теории множеств запрещено), число ω оказывается и магическим, и мистическим, и фантастическим. Вследствие этого между числом ω и всеми конечными числами N имеет место "дырка", которая одновременно может быть и "черной дырой", в которую могут улетать мириады бесконечных множеств N, и "черной антидырой", из которой можно черпать также мириады бесконечных множеств. Несмотря на всю эту экзотику, множество натуральных чисел остается неизменным по своей мощности, то есть по своему количеству элементов. Такое положение вещей находится в явном противоречии с классической логикой, с ее принципом "часть не может быть равна целому". Это, наверное, и побудило Г. Кантора и Р. Дедекинда ввести в теорию бесконечных множеств принцип "часть может быть равна целому" (этот принцип ввел в обиход еще Николай Кузанский).