Смекни!
smekni.com

Нестандартные задачи в курсе школьной математики (неполное и избыточное условие) (стр. 4 из 7)

При решении задач неопределённых учащиеся не умеют перебирать всевозможные случаи, которые возникают из–за этой неопределённости, и часто либо находят одно решение, либо пишут, что задача не решается.

Итак, ответ на поставленный вопрос очевиден: сами учащиеся не готовы к решению неопределённых и переопределённых задач, этому нужно их целенаправленно учить. Как? Чтобы ответить на этот вопрос, сначала задумаемся о том, чему могут научить задачи с «аномальным» условием?


II. Обоснование целесообразности задач с «аномальным» условием

Для ответа на последний вопрос рассмотрим исследуемые типы задач более подробно, чтобы определить, что конкретно требуется от ученика при решении каждого из них.

1. Неопределённые задачи – задачи с неполным условием, в котором для получения конкретного ответа не хватает одной или нескольких величин или каких–то указаний на свойства объекта или его связи с другими объектами.

Примеры:

1. В треугольнике одна сторона имеет длину 10 см, а другая 8 см. Найти длину третьей стороны.

2. Поезд состоит из цистерн, товарных вагонов и платформ. Цистерн на 4 меньше, чем платформ, и на 8 меньше, чем вагонов. Какой длины поезд, если каждая цистерна, вагон и платформа имеют длину 25 м?

3. Заасфальтировали на 30 км больше, чем осталось. Сколько процентов дороги покрыто асфальтом?

С первого взгляда ясно, что задача 1 не может иметь решения, потому что в ней не хватает данных. Однако исследуем ситуацию глубже. Вспомним неравенство треугольника и запишем его для данного треугольника, обозначив неизвестную сторону через а.

Получим:

10 + 8 > a;

a + 10 > 8;

a + 8 > 10;

а из этой системы следует, что

2 < a < 18.

Таким образом, нам удалось уточнить ответ с фразы "задачу невозможно решить" до вполне определённого интервала, что следует признать ответом более высокого уровня.

И во второй задаче напрашивается вывод, что никакой ответ там невозможен, поскольку данных не хватает. Но при более внимательном анализе условия выявляется, что не любое число может получиться в ответе. Например, невозможны ответы 333 м и 250 м, хотя и по разным причинам. Первое невозможно, потому что ответ должен быть кратным 25 м. А второе невозможно, т.к. общее количество тяговых единиц не может быть равным десяти. Сколько же этих единиц там может быть?

Если в поезде х цистерн, то платформ х+4, а вагонов х+8. Вместе: 3х+12. Таким образом, всех тяговых единиц не меньше пятнадцати, а возможный ответ: 25(3х+12) м, где х – натуральное число. Над "дизайном" ответа можно поработать, если переписать его так: 75(х+4). А теперь, переобозначив буквой х (или другой) количество платформ, получим самый короткий вариант ответа: 75х м, где х – натуральное число, не меньшее пяти.

Что ни говори, а такое решение требует более высокого уровня умственной деятельности, чем примитивное "Задача не имеет решения, потому что данных не хватает". И, разумеется, что указанного решения от школьников сразу не получишь, что и подтвердили первые пробы со стапроцентным результатом.

Третья из указанных здесь задач предлагалась девятиклассникам лицея. Результат тот же: "Задача не решается...". Только дополнительная просьба назвать несколько возможных ответов подтолкнула лицеистов к анализу и в конце концов вывела на ответ, близкий к правильному: х%, где хÎ(50;100].

Вывод: решение неопределённой задачи обычно заканчивается неопределённым ответом, в котором искомая величина может принимать значения из некоего числового множества. Выявление этого множества и должно стать целью решения такой задачи, что достигается вдумчивым анализом текста задачи и взаимосвязей между данными величинами. Этому полезному для умственного развития учащихся процессу нужно специально обучать.

Задачи этого типа требуют от ученика мобилизации практически всего набора знаний, умения анализировать условие, строить математическую модель решения, находить данные к задаче "между строк" условия. Практически, одной специально подобранной задачей этого типа можно проверить знания ученика по целой теме. В качестве такого примера можно рассматривать задачу: При каких значениях положительного параметра a уравнение logax=axбудет иметь единственное решение и указать его. Эта задача была предложена нашей группе (группа «А» IV курса физико–математического Могилёвского университета, 1997 год) на занятиях по дидактике математики для самостоятельного решения, что помогло студентам группы весьма существенно повторить и углубить знания по широкому спектру школьного курса алгебры и начал анализа.

Вообще, уравнения и другие задачи с параметрами можно рассматривать как частные случаи неопределённых задач. Проблемность перехода к таким задачам ощущают учителя уже при переходе от уравнений 7х=12, 0х=3, –5х=0, 0х=0 к линейному уравнению общего вида: ах=b. Предварительная тренировка в решении неопределённых задач и здесь была бы целесообразной и полезной.

2. Задачи переопределённые – задачи с избыточным составом условия, с лишними данными, без которых ответ может быть получен, но которые в той или иной мере маскируют путь решения.

Как уже показано выше, данные в таких задачах могут быть противоречивыми и выявление этой противоречивости или непротиворечивости является обязательным элементом решения такой задачи.

Например, в задаче "Найти площадь прямоугольного треугольника с катетами 9 см и 40 см и гипотенузой 41 см" мало найти ответ полупроизведением 9 на 40. Надо ещё выявить, будет ли у прямоугольного треугольника с катетами 9 см и 40 см гипотенуза равной 41 см. Без этого выяснения решение задачи не может быть признано полным.

В этом аспекте интерес представляют практические задачи. Например, при изучении первой формулы площади треугольника учитель приносит в класс вырезанный из бумаги треугольник с проведенными высотами и предлагает одному из учащихся измерить длину какой–либо стороны, потом второму ученику длину второй стороны, третьему – третьей, ещё трое измеряют высоты, каждый по одной. Результаты измерений записываются на доске. Теперь учитель предлагает вычислить площадь этого треугольника. Вопрос, какая высота к какой стороне проведена, учитель переадресует учащимся, которые измеряли, но те, естественно, не помнят, поскольку не фиксировали на этом внимания. Возникает интересная проблема, которая в итоге всё же разрешается, исходя из того, что площадь одного и того же треугольника не может иметь разных значений. Поэтому самая большая высота должна быть проведена к самой маленькой стороне, а самая маленькая к самой большой. Теперь площадь треугольника можно вычислять тремя способами, но результат, как выясняется, получается не совсем одинаковым. Появляется причина поговорить о сущности измерений, об их обязательной неточности, о качестве приближённых измерений, об особенностях вычислений с приближёнными числами и других соответствующих вопросах. И элементарная задача на применение примитивной формулы наполняется богатым содержанием.

Задачи этого типа требуют от ученика умения анализировать условие, находить в нём нужные данные и отбрасывать ненужные. Причём, "ненужными" у разных учеников могут быть разные величины. Например, в задаче "Найти площадь прямоугольника по стороне, диагонали и углу между диагоналями" одни ученики будут искать ответ половиной произведения диагоналей на синус угла между ними (тем самым сторона становится лишним данным), другие получат ответ произведением сторон, предварительно вычислив вторую сторону по теореме Пифагора (здесь угол становится лишним данным). Возможен и третий вариант, когда лишним данным станет диагональ. Использование нескольких вариантов решения такой задачи полезно не только для их сравнения, но больше для самоконтроля: одинаковость ответов при разных решениях повышает уверенность в их правильности. Отсюда можно получить и один из надёжных способов самоконтроля в решении традиционных задач: после получения ответа вставить этот ответ в текст задачи как одно из данных, а одну из известных величин считать неизвестной и решить полученную новую задачу.

3. Нереальные (или противоречивые) задачи обычно относят к отдельному типу, хотя, как отмечено выше, они являются составной частью переопределённых (иногда определённых) задач.

Пример: Найти площадь треугольника со сторонами 10 см, 19 см и8 см.

Вовсе необязательно решать приведенную задачу, чтобы понять, что она не имеет решения. Достаточно лишь проверить условие на противоречивость при помощи неравенства треугольника и убедиться, что задача не может иметь решения.

Можно было бы решить эту задачу, используя формулу Герона, но и тогда в конце концов был бы получен противоречивый результат (подкоренное выражение получилось бы отрицательным).

Для таких задач характерным является то, что они могут иметь достаточно красивое решение, как это было с приведённой выше задачей на переливание жидкости, но только это решение будет противоречить здравому смыслу. При решении таких задач необходимо всегда в конце возвращаться к условию и делать проверку полученного решения. А поскольку противоречивость задачи не всегда бросается в глаза, это приучит выполнять проверку полученного ответа в каждой задаче. Некоторые из задач этого типа позволяют выявить противоречие данных еще при анализе условия, в результате чего процесс решения становится излишним. Достаточно частое повторение таких ситуаций приведёт учащихся к необходимости анализировать условие перед началом решения, чтобы избавить себя от лишней работы.