Смекни!
smekni.com

Методическое наследие Ф.В. Филипповича (стр. 7 из 10)

Все полученные пирамиды равны между собою, это очевидно. Но мы знаем, что объем куба измеряется произведением площади основания на высоту, а так как каждая из полученных пирамид составляет

куба, то и объем каждой пирамиды будет равняться произведению площади основания на
высоты куба, или, что все равно, на
высоты пирамиды, потому что высота каждой из пирамид составляет
высоты куба.

Третий способ: возьмем опять тот же куб из 6 пирамид и проведем через его центр плоскость, параллельно основанию; тогда наш куб разделится на два прямоугольных бруса (параллелепипеда). В каждом из брусов будет заключаться одна полная пирамида, покоящаяся на основании куба, и четыре боковые, составляющие половины первой. Если получившиеся четыре боковые пирамиды сложим по две, то у нас будут - вместе с оставшейся целой пирамидой –три совершенно равные пирамиды, заключенные в одном брусе. Следовательно, объем каждой из них составляет

объема бруса. Так как объем бруса равен произведению площади основания и высоты, то объем четырехугольной пирамиды измеряется произведением площади ее основания на
высоты, т.е.

.[12, 194-197]

Без сомнения, самым удачным следует признать первый способ. Именно этот способ выбрал Филиппович для лабораторных работ в своем учебном пособии «Начальная геометрия». Сначала он предлагает измерить опытным путем объем треугольной пирамиды и треугольной призмы, а затем произвести аналогичный опыт с четырехугольной пирамидой и параллелепипедом. Вообще, по теме «Треугольная пирамида» Филиппович разработал следующий цикл практических упражнений. Первые пять заданий заключаются в том, чтобы по данной развертке треугольной пирамиды определить ее апофему, сторону правильного треугольника и его высоту, боковую и полную площадь пирамиды. [3, 37-38]

Далее Филиппович пишет:

«Для того, чтобы узнать, как измеряется объем треугольной пирамиды, изготовь из картона треугольную пирамиду и треугольную призму, имеющие одинаковые основания и высоты. После этого, наполняя пирамиду, например, мелким песком, удостоверься, сколько раз надо брать содержимое пирамиды для наполнения призмы. Стало быть,

Объем треугольной пирамиды =………..объема треугольной призмы.

Обьем треугольной пирамиды =…………..куб. см.

Сделай из картона брус и квадратную пирамиду, имеющие одинаковые основания и высоты, и таким же способом покажи, как измеряется объем квадратной пирамиды (см.рис.).

Объем пирамиды …….= ..... объема призмы.

Если обозначить высоту квадратной пирамиды через Н см., а длину стороны квадрата а см., то

Объем пирамиды ….... = куб. см.» [29, 15 ]

О преподавании алгебры

Учение о прогрессиях является традиционным разделом в современном школьном курсе математики. Заметим, что сведения о прогрессиях были включены еще в самую первую официальную программу для гимназий в 1845 году и стабильно сохранялись как в до революционной, так и в советской средней школе. Включение этого раздела в курс математики средней школы оправдано сразу из нескольких соображений. Во-первых, арифметическая и, особенно геометрическая, прогрессии имеют широкие применения в экономике и в самой математике (при помощи бесконечной геометрической прогрессии можно изложить учение о периодических десятичных дробях, вычислять пределы интегральных сумм (уделенные интегралы) и т.п.). Во-вторых, здесь школьники получают первые элементарные представления об очень важном магического анализа - теории рядов (арифметическая и геометрическая прогрессии являются примерами простейших числовых последовательностей, а их частичные и бесконечные суммы – примерами частичных сумм и просто сумм числового ряда и т.п.) Изучение данной темы не вызывает принципиальных затруднений у школьников.

Методика изучения прогрессий, описанная В.Р. Мрочеком и Ф.В. Филипповичем, широко использует символическую наглядность и, поэтому способствует более прочному сохранению в памяти информации о прогрессиях.

Отличительной особенностью «Педагогики математики» является также наличие большого набора задач практически по всем рассматриваемым разделам. [3, 39-42]

Пример задачи к разделу об арифметической и геометрической прогрессиях: «Бедняк предложил богачу жить у него на следующих условиях. Бедняк будет платить своему квартиранту ежедневно на 1 р. Больше, чем накануне, в первый же день уплатит ему 1р. богач, напротив, должен платить так: в первый день – копейку, во второй – две, в третий – четыре, в четвертый – восемь и т.д. В виде опыта они заключили двухнедельное условие. Кто из них отказался от продолжения условия? (Ответ: богач, т.к. ему пришлось доплатить бедняку 58р.63к.)» [12, 241]

Всюду, где это только возможно, авторы стараются выявить существующие методические подходы к изучению темы и построению курса, глубоко и всесторонне анализируют эти подходы, пытаясь установить наиболее целесообразный. Так, после критического анализа трех главных систем построения школьного курса алгебры (в основе первой - учение о тождественных преобразованиях, согласно второй системе материал группируется около двух главных моментов: уравнений первой и уравнений второй степени», в третьей же системе доминирующую позицию занимает функциональная идея) педагоги приходят к следующим выводам:

«В алгебре, как и в других отделах математики, материал должен быть распределен по циклам. Если иметь в виду интересы учащихся, то содержание первого цикла должно ограничиваться вопросами об уравнениях первой и второй степени, решаемых аналитически и графически, и знакомством с практикой логарифмических вычислений. Построение курса должно быть таково, чтобы арифметика и алгебра развивались нераздельно и непрерывно». [12, 241]

Вопрос о введении общего понятия уравнения, также как и общего понятия функции,пока еще в дореволюционной методике обучения математике не ставится. Однако поповоду изучения конкретных видов функций (линейной функции (в т.ч. прямой пропорциональности) и квадратичной функции) сделан ряд перспективных предложении. Так в зародышевом виде здесь высказана идея о методической схеме изучения конкретной функции.

Описанная схема (конкретные задачи - графическая интерпретация - аналитическая запись — исследование) реализована Мрочеком и Филипповичем в методике изучения линейной функции. Похожие идеи были высказаны, развиты и окончательно сформулированы советскими педагогами, которые предложили следующую схему изучения конкретных функций:

1) рассмотрение конкретных ситуаций (или задач), приводящих к данной функции;

2) формулировка определения данной функции, аналитическая запись функции; исследование входящих в эту формулу параметров;

3) ознакомление с графиком функции;

4) исследование свойств функции;

5) использование изученных свойств функций при решении различных задач, в частности уравнений и неравенств.

Эта схема получила всеобщее признание, о чем свидетельствует хотя бы то, что ее придерживаются практически вес учебники алгебры для девятилетней школы. [3, 44]

Последовательность изучения квадратичной функции почти такая же: сначала дается понятие о параболе на основе графического описания процесса свободного падения, затем указывается что «эту же кривую можно получить и аналитическим путем» и без всякихпояснений говорится, что дано уравнение у=х

, а учащимся предлагается составить таблицу для некоторых значений х и у, затем построить график. На следующих страницах выясняется положение параболы на плоскости в зависимости от параметров, входящих в описываемое эту параболу уравнение. Надо уточнить, что всякий раз здесь рассматриваются конкретные числовые значения параметров, а не общий случай.

В данной главе заслуживает внимания раздел, в котором описываются приближенные приемы извлечения квадратного корня. Авторы предлагают пять приемов. «Извлечение квадратного (и вообще корня) есть действие, обратное возведению в степень, поэтому на первых порах лучше всего пользоваться таблицей квадратов чисел. Так как при решении геометрических вопросов в большинстве случаев получаются иррациональные числа, то учащиеся скоро будут поставленыперед необходимостью интерполировать свою таблицу; таким образом, они познакомятся с различными приемами приближенного извлечения квадратных корней. Эти приемы указаны в книге.

Таким образом, Ф. В. Филиппович (преимущественно в соавторстве с В.Р. Мрочеком) выявил связи методики математики с другими областями знаний, сделал решительные шаги вперед в определении круга вопросов, которыми занимается методика математики, выделил отличительные признаки математики – учебного предмета и математики - науки, заложил теорию целеполагания в обучении математике, развил идею о наглядности в обучении математике.

В частной (и специальной) методиках он развил методические идеи наглядной геометрии, числовой линии (рационального числа, положительного и отрицательного числа), квадратных уравнений первой степени в связи с учением о функция и т.д.

В теоретической части В. Р. Мрочек и Ф. В. Филиппович увлекаются цитированием американских и английских мыслителей — Литца, Сивера, Демолена, Холла и др., но в тоже время в практической части, что показательно, есть немало упоминаний о трудах русских педагогов - А.И. Гольденберге, В.П. Ермакове, К.Ф. Лебединцеве, А.Н. Страннолюбском, Н.А. Томилине и др. [3, 44-47]