Смекни!
smekni.com

Методическое наследие Ф.В. Филипповича (стр. 8 из 10)

О преподавании начал анализа

Особенно ценным представляется вклад Ф. В. Филипповича в развитие методики преподавания начал математического анализа в средней школе. Элементы высшей математики тогда в России делали самые первые шаги в школьные программы, только начинали создаваться учебники по анализу бесконечно малых и аналитической геометрии для средней школы, поэтому предложения Филипповича были не только смелыми, но и весьма своевременными.

Просто удивительно, как грамотно, убедительно автор раскрывает узловые моменты методики преподавания математического анализа: доказывает целесообразность внедрения элементов математического анализа в среднюю школу, раскрывает приоритетные направления, идеи и пути конструирования содержания.

Следует также отметить, что развернувшиеся в начале XX века споры о целесообразности введения в школьный курс математики новых идей свидетельствует о знакомстве оппонентов с мировой и отечественной педагогикой и психологией.

Среди тех, кто в этот период приветствовал преподавание высшей математики в средней школе, были видные отечественные ученые, известные гражданские и военные педагоги: П.А. Некрасов, Б.Б. Пиотровский, М.Г.Попруженко, В.Е.Сердобинский, В.Шидловский, С.И. Шохор-Троцкий, В.П.Шереметевский.

Свою позицию имел и Ф.Филиппович, который одним из первых наиболее четко и ярко обозначил основные аргументы в пользу введения анализа бесконечно малых в среднюю школу.

Филиппович доказывает, что введение высшей математики вызвано необходимостью воплощения принципа научности. Ведь именно принцип научности требует, «чтобы содержание обучения знакомило учащихся с объективными научными фактами, теориями, законами, отражало бы современное состояние наук». Также Филиппович высказывает свои соображения в пользу начал дифференциального и интегрального исчисления в школьном курсе. Целесообразность этого нововведения, как он справедливо считает, продиктована необходимостью «удовлетворить запросы жизни» («утилитарная» функция математики).

Реализация принципа связи обучения с жизнью и практикой, особенно в старших классах, бывает осложнена тем, что в силу своей специфики (абстрактности) математика имеет опосредованное отношение к действительности. Но для решения практических задач естествознания и техники математический аппарат (в том числе и идея функциональной зависимости и аппарат производной) просто необходим. Ведь именно математический анализ занимается разработкой методов построения и изучения динамических моделей в математике, моделей, описывающих движения, текущие процессы, непрерывно меняющиеся состояния, широко распространенные в природе. [3,47 – 51]

Идея концентризма в последовательности изложения начал математического анализа в средней школе Ф. В. Филиппович резко критикует методику изложения элементов математического анализа в русских учебниках, предназначенных для средней школы, призывает позаимствовать все полезное у французов и пытается доказать целесообразность идеи концентризма в последовательности изучения темы:

«В связи с введением анализа бесконечно малых в среднюю школу возникают разногласия по поводу построения самого курса. Новые французские учебные планы, «Меранская» программа в Германии и другие настаивают на введении идеи функциональной зависимости. Реформаторы всех направлений присоединяются к этому требованию. Действительно, объяснить какое-нибудь явление в природе - это значит выяснить его генезис и связь с другими явлениями. Ввиду этого лучше всего развивать идею функциональной зависимости (закономерности) в математике. Учение о функциях есть центральное учение всей математики, потому что функциональная зависимость есть математическое выражение великого закона изменяемости соотношения всех явлений; установление ее есть сущность и конечная цель всей науки. Поэтому мы, сторонники реформы, требуем, чтобы весь курс математики был сконцентрирован около идеи функциональной зависимости и расширен первоначальными понятиями анализа бесконечно малых. Стало быть, начала дифференциального и интегрального исчислений не должны составлять самостоятельного отдела - «учения о функциях» - и являться какой-то «надстройкой» над школьным курсом, так называемой элементарной математики. Практика показала, что такая метода (надстройки) преподавания анализа бесконечно малых теряет свою воспитательную и общеобразовательную ценность. Анализ бесконечно малых в таком роде не только не возбуждает и не поддерживает интерес к математике у учащихся, но даже и усваивается очень трудно.

Раньше еще, до начала анализа бесконечно малых, должны мы подготовлять почву для ясного, отчетливого и возбуждающего новые идеи преподавания элементов дифференциального и интегрального исчислений. Некоторые способности у учащихся поддаются развитию только в известном возрасте, раз этот момент будет упущен, тогда довольно трудно наверстать пропущенное. Ввиду этого, еще с младших классов средней школы на уроках арифметики, геометрии, алгебры, ... следует проводить красной нитью в течение всего курса школьной математики идею функциональной зависимости. В этом-то и заключается точное понимание аналитической геометрии и начал дифференциального и интегрального исчислений.

В самом начале [преподавания] анализа бесконечно малых мы должны исходить из более конкретных и простых задач. Целесообразно подобранными примерами из естествознания следует проиллюстрировать учащимся, что исследование какого-нибудь явления сводится к достижению двух результатов: а) найти общий закон, выражающий ход этого явления (функцию) и b) определить скорость изменения этого явления природы в каждый произвольно взятый момент (производную).

Целью преподавания высшей математики в средней школе ни в каком случае не должно быть только усвоение механизма, техники дифференцирования и интегрирования. При такой методе начала дифференциального и интегрального исчислений потеряли бы всю свою общеобразовательную и воспитательную ценность. Тоже самое можно было бы сказать, если бы весь курс анализа состоял из доказательств теорем и применений их к дифференциалам и интегралам.

По моему мнению, мы должны воспользоваться задачами из физики, химии, техники и др., чтобы на них выяснить происхождение основных понятий дифференциального и интегрального исчислений. Например, какая-нибудь задача из естествознания дает нам возможность составить функцию, изобразить ее графически, затем исследовать и под конец найти ее производную. Подходя таким образом к понятию о производной, мы всегда должны выяснять, в чем сущность задачи дифференциального исчисления и давать наглядное представление (графическое изображение). После графического изображения идет идея и понятие производной, а под конец - термин и символ производной.

При такой системе преподавания ученики вникают в математичность жизни природы и видят наглядно, какое колоссальное значение математики со стороны ее метода. Далее, при изучении анализа, ученикам предоставляется большой простор, чтобы проявить свою самостоятельную работу, самодеятельность и постоянно делать умозаключения. Кроме того, такой порядок вещей не сводит начала дифференциального и интегрального исчислений к собранию непонятных значков и символов, как утверждают некоторые Противники введения анализа бесконечно малых в среднюю школу. Но в этом-то и состоит задача педагогики - сделать науку понятной, заставить ее говорить простымj обыкновенным языком. «Нет мысли, которую нельзя было бы высказать просто и ясно», [говорил] А.И.Герцен. В самом деле, кто следил за учебной заграничной литературой в течение последних 25-30 лет, тот может констатировать что всюду замечается стремление к упрощению изложения материала. Достаточно сравнить новейшие учебные книги со старыми. То же самое можно утверждать и относительно школьных программ и учебных планов. Что касается русских учебников по анализу бесконечно малых, то в этом отношении дело обстоит довольно плохо. Все эти учебники для средней школы построены приблизительно по одному типу. Сначала идет сухое изложение понятия о функции, затем подразделение функций, теоремы о пределах, непрерывность функций, Производная и дифференциал и т.д. Такое построение курса анализа навряд ли может вызывать интерес у учащихся. Некоторые французские и немецкие учебники могли бы послужить хорошим примером, как надо составлять учебное руководство по анализу бесконечно малых для средней школы.

Как всякий отдел математики, анализ бесконечно малых должен быть построен концентрически. Еще с V класса при графическом изображении эмпирических функций мы должны подготовлять почву для дифференциального исчисления. А в VI и VII классах при проведении идеи функциональной зависимости на уроках алгебры следует учащихся знакомить с понятием о производной, а на уроках геометрии - с понятием об интеграле.

В VIII классе - связный обзор изученных в предыдущих классах функций и элементы дифференциального и интегрального исчислений».[31, 104-107]

Рассматривая методику введения понятия производной Ф. В. Филиппович высказал ряд интересных методических замечаний по поводу изучения конкретных понятий. Так, для введения понятия производной, автор считал необходимым широко привлекать сведения из геометрии, физики, химии и т.п.:

«Учение о производной должно быть разрабатываемо с различных точек зрения. Прежде всего, рассматривая равномерное и неравномерное движение, мы подводим учащихся к понятиям о постоянной скорости, средней скорости в определенный промежуток времени и скорости для некоторого момента t. Таким образом, вводя понятие о скорости изменения в учение о функциях, мы устраиваем аналогию с механическими процессами движения. Сначала скорость есть производная пути по времени, на другом примере у нас получится, что скорость химической реакции есть производная количества реагирующего тела по времени, далее, по известной формуле расширения от теплоты, мы можем определить коэффициент расширения как меру скорости, с которой идет процесс расширения при равномерном нагревании. Конечно, и другие примеры должны показать учащимся, какие разнообразные задачи приводят нас к понятию о производной.