испытания 560°С и напряжении 100 МПа, откуда следует, что сопротивление ползучести стада 12ХГНМФ значительно выше, чем у стали аналогичного состава с большим содержанием никеля" хрома и молибдена, но без добавок ванадия. В результате оптимизации химического состава стали 12ХГНМФ разработана сталь 15ХГНМФТ, содержащая в 1,5-2,0 раза меньше дефицитных легирующих элементов молибдена, никеля, марганца при сохранении на высоком уровне эксплуатационных характеристик. Сталь 15ГНМФТ хорошо сваривается, не склонна к образованию горячих и холодных трещин в околошовной зоне.
Рис.2. Кривые ползучести сталей 12ХГНМ и 12ХГНМФ при 560С и напряжении 100МП.
Долгое время не обращалось должного внимания на присутствие остаточных элементов (азота и алюминия) в низколегированных хромолибденованадиевых сталях. Определение содержания азота на большом числе плавок показало, что мартеновская сталь 12Х1МФ содержит до 0,008 мас. %, в то время как при выплавке стали в электродуговой печи его содержание достигает 0,02 мас. %. Установлено, что, кроме остаточного азота стали меняется и остаточное содержание алюминия от 0,01 до 0,07 мас. % в зависимости от метода выплавки.
Исследование влияния азота и алюминия на свойства стали 12Х1МФ показало, что при комнатной температуре при увеличении содержания алюминия с 0,010-0,012 до 0,05-0А07 мас. % прочностные характеристики не изменяются. Однако с повышением содержания азота как при низком, так и при высокой содержании алюминия временное сопротивление и предел текучести понижается с 638 до 490 и с 510 до 392 МПа. Длительная прочность стали при 540°С и низком содержании алюминия (0,010-0,012%) с увеличением содержания азота от 0,01 до 0,02 мас. % катастрофически снижается, но при дальнейшем увеличении содержания азота практически не меняется.
При содержании алюминия 0,05-0,07 мас. % эти закономерности сохраняются, однако время до разрушения при любом содержании азота уменьшается почти в два раза по сравнению с полученным на стили с содержанием алюминия 0,010-0,012 мас. % (рис.3). Аналогичные зависимости имеются также при температурах 570 и 610°С„
Отрицательное влияние азота на свойства хромомолибденванадиевой стали 12Х1МФ при увеличении его содержания до 0,025-0,040 мас. % связано с измельчением зерна, превращением аустенита в перлитной области, выделением более грубых частиц нитрида ванадия и карбида Ме2зС6 по границам зерен и образованием объединённых приграничных зон. В этом случае время до разрушения снижается более, чем на порядок.
При повышенном содержании алюминия в стали 12X1МФ распад твёрдого раствора происходит в перлитной области с образованием большого количества карбидных фаз (VC и Ме2зС6), выделяются нитриды алюминия (при концентрации азота около 0,01 мас.%), вдоль границ зёрен образуются зоны, свободные от выделений. В результате отмеченных структурных изменений время до разрушения стали уменьшается примерно в 2 раза при одновременном снижении длительной пластичности с 12-14 до 4-6%.
Таким образом, Для достижения максимальной жаропрочности остаточные содержания азота и алюминий в стали типа 12Х1МФ не должны превышать 0,01 мас. % каждого.
Большое значение имеет применяемая при выплавке шихта. Проведенными работами по влиянию цветных примесей (Pb, Zn, Sn и Си) на свойства стали 12Х1МФ было показано, что все проанализированные примеси, не изменяя кратковременных свойств, снижают жаропрочность стали 570°С и напряжениях 160 и 180 МПа (рис.4). Отрицательное воздействие проявляется при содержании 0,0001 мас. %РЬ, 0,0001 мае% Sn около 0,001 мае. % Zn и 0,1 мае. % Сu.
Рис.3. Влияние содержания азота и алюминия на прочностные характеристики стали 12Х1МФ при 20°С и жаропрочность при 560°С.
Рис.4. Влияние цветных примесей на время до разрушения стали 12Х1МФ при 570°С.Одним из путей повышения качества является применение современных способов выплавки, в частности электрошлакового переплава (ЭШП), который весьма перспективен для низколегированной Cr-Mo-V стали. В процессе ЭШП значительно уменьшается содержание неметаллических включений и газов, снижается химическая неоднородность металла. В металле ЭШП практически отсутствуют крупные включения и сульфидные строчки, а мелкие включения распределены равномерно по всему объему металла. Благодаря большей чистоте металла, более чем в два раза возрастает технологическая пластичность. Кроме того, ЭПШ значительно повышает длительную пластичность при сохранении тех же или более высоких (на 10,0-15,0 МПа) значений длительной прочности за 105 ч. по сравнению с металлом обычной выплавки.
Другим путем повышения свойств теплоустойчивых сталей (длительной прочности и сопротивления по ту чести) может быть микролегирование. Правильный выбор микролегирующих добавок, их сочетание и последовательность ввода в оптимальном количестве могут значительно повысить длительную прочность и сопротивление ползучести, а также сократить расход молибдена.
На рис.5 показано изменение сопротивления ползучести хромомолибденванадиевой стали и стали аналогичного состава с добавками бора, РЗМ и циркония. Микролегирование позволяет значительно уменьшить скорость ползучести такой стали, поскольку микродобавки благоприятно влияют на тонкую дислокационную структуру, фазовый состав стали и количество выделяющейся упрочняющей карбидной фазы.
Так, при введении циркония в количестве до 0,5 мас.% образуются дисперсные частицы карбида ванадия, снижается содержание карбидов Ме:, С\ Ме7Сз и Ме2зС(), формируются бейнитные участки с высокой плотностью дислокации. Кроме того, микролегирование упомянутыми добавками уменьшает количество неметаллических включений, изменяет их тип, форму, размеры и характер распределения.
Таким образом, улучшить качество хромомолибденванадаевой стали можно путем применения ЭШП, использования чистых по вредным примесям шихтовых материалов, снижением азота и алюминия в металле до 0,01 мас.% каждого, а также применением микролегирования. Такой металл можно рекомендовать для мощных энергоблоков с целью увеличения их срока службы в 2-2,5 раза.
Жаропрочные сплавы на никелевой основе.
Жаропрочные сплавы на никелевой основе применяются, главным образом в качестве материала деталей, работающих в интервале 700-1100°С и условиях значительных напряжений и агрессивной среды продуктов сгорания топлива.
К современным жаропрочным сплавам предъявляют следующие требования: максимально высокий предел длительной прочности и ползучести; стабильность структуры и свойств в процессе длительного воздействия температуры и напряжения; высокое сопротивление высокотемпературной коррозии в продуктах сгорания топлива; высокая термоусталостная и усталостная прочности; малая чувствительность к концентраторам напряжений; необходимый уровень технологических свойств, обеспечивающий серийное производство изделий из этих сплавов на современном оборудовании.
Высокожаропрочные сплавы обычно имеют в своем составе 12-13 легирующих элементов, которые выполняют определенные функции (Рис.6): легирование твердого раствора, образование упрочняющей интерметаллидной γ-фазы, карбидообразование, зернограничные эффекты и т.д.
На рис.7 показана удельная высокотемпературная прочность ряда зарубежных жаропрочных материалов для деталей газовых турбин, из которого следует, что для никелевых сплавов повышение рабочих температур и напряжений связывается с применением литейных сплавов с равноосной и направленной структурой. Повышение жаропрочности достигается усложнением химического состава сплава, увеличением содержания упрочняющей γ-фазы (рис.8).
Для работах лопаток энергетических газотурбинных установок разработаны деформируемые сплавы ХН65КМВЮБ и ХН60КВЮМБ. В зарубежной практике для данного назначения в основном используют авиационные материалы Юдимет 700, Нимоник 115, Инконель 100, Инконель 713С, MARM-241. Однако специфические условия службы стационарных газовых турбин (длительный срок службы, использование топлива с высоким содержанием серы и пятиокиси ванадия, значительный перепад температуры по длине лопатки) потребовали создания специальных материалов. Преимуществом новых сплавов по сравнению с существующими является сочетание высокой жаропрочности с хорошей деформационной способностью при рабочих температурах и коррозионной стойкостью в продуктах сгорания природного газа.
Сплав ХН65КМВЮБ по характеристикам длительной прочности на базе испытания 10000 ч при 700-800°С (а 800=220Н/мм²) превышает применяемый в настоящее время сплав ХН65ВМТЮ в среднем на 120 Н/мм². При равноценной жаропрочности с авиационным сплавом ХН55ВМТКЮ сплав ХН65МВТЮ имеет лучшую технологичность и существенно более высокую жаростойкость и коррозионную стойкость.