Смекни!
smekni.com

Аналіз можливих схем електрохімічних генераторів для автономних джерел електричної енергії (стр. 2 из 6)


Рис. Схема паливного елемента

Порушення рівноваги між атомами і іонами палива приведе до виникнення нових іонів і електронів. Безперервний процес іонізації окислювача забезпечується переходом електронів до катоду.

Таким чином, в паливних елементах реакція йде не між атомами і молекулами, а між іонами. Етапи реакції:

1. Під впливом каталітичних властивостей анода молекули водню розпадаються на атоми і іонізуються з утворенням іонів і електронів

.

2. Електрони через споживач енергії переходять на катод, де створюються негативні іони кисню

.

3. Іони кисню переходять у розчин електроліту і створюють іони гідроксилу

.

4. Іони гідроксилу переміщуються у розчині електроліту від катода до анода і створюється кінцевий продукт реакції – вода

.

Для того, щоб не знижалася концентрація електроліту, необхідно постійно відводити воду.

Схема паливного елемента з іонообмінною мембраною приведена на рис.2.2. В такому елементі газові простори поділені мембраною, яка пропускає іони водню, але не пропускає молекули кисню і гідроксильні групи „ОН”.

Рис. Схема паливного елемента з іонообмінною мембраною

Між поверхнею мембрани і пористими токозйомниками нанесений шар каталізатора, тобто іонообмінна мембрана виконує роль твердого електроліту. При „кислотній” мембрані вода створюється на стороні окислювача і виводиться спеціальними пристроями.

Таким чином, процес генерування енергії в паливних елементах описується, як процес обміну електронами між паливом і окислювачем з утворенням нового хімічного сполучення.


3 АНАЛІЗ РОБОЧОГО ПРОЦЕСУ ПАЛИВНИХ ЕЛЕМЕНТІВ

Відповідно з першим законом термодинаміки, щодо хімічних реакцій, змінювання повної внутрішньої енергії системи DUn дорівнюється теплоті хімічної реакції Q і здійсненої при цьому роботі LS

DUn=Q+LS . (3.1)

Під повною внутрішньою енергією розуміють суму фізичної Uф і хімічної Qx її частин

Un=Uф+Ux . (3.2)

Фізична частина повної внутрішньої енергії складається з кінетичної енергії поступового і обертального хаотичного руху молекул і залежить від температури тіла, а її хімічна частина становить з себе енергію молекулярних зв’язків, від температури не залежить і змінюється тільки при зміні хімічного складу робочого тіла.

Сумарна робота LS хімічної реакції з механічної роботи Lmеx стиснення або розширення продуктів реакції і роботи, яка здійснюється проти електричних, магнітних і інших сил

LS= Lmеx+Lел . (3.3)

Тому як тиск і температура реакції, яка йде в паливному елементі, практично постійні (ізобарно-ізотермічний процес), то механічна робота може здійснюватися тільки за рахунок зміни кількості молей в реакції

, (3.4)

де Z – кількість молей речовини;

А – хімічний символ речовини.

Для такої реакції можливо записати в загальному вигляді вирази для механічної роботи Lмех і для змінювання повної внутрішньої енергії

; (3.5)

. (3.6)

Враховуючи ці вирази, можливо рівняння першого закону термодинаміки записати у виді

, (3.7)

де Іі=Uі+PіVі – повна ентальпія речовини, яка становить з себе суму повної внутрішньої енергії і енергії тиску при даному стані системи.

Враховуючи вирази (3.5 і 3.6 ) можливо ефективний ККД представити у вигляді

, (3.8)

де

- ККД ідеального паливного елемента;

- ККД по напрузі;

- ККД по струму.

В загальному випадку ідеальний ККД паливного елемента може бути більш, менш або рівнятися одиниці.

Звичайно температура паливного елемента підтримується вище ніж температура навколишнього середовища (80-90°С) і hід<1.

Фізична сутність того, що hід>1, становить з себе те, що в паливному елементі в електричну енергію перетворюється не тільки хімічна енергія реагентів, але й частина теплоти навколишнього середовища.

ККД по напрузі hu на режимах близьких до холостого ходу досягає значень близьких одиниці, а по мірі навантаження зменшується.

Він характеризує значення поляризаційних втрат, тобто падіння напруги на виході з паливного елемента через внутрішній опір.

ККД по струму досягає значень 0,95-0,98 і характеризує ефективність використання реагентів в паливному елементі, тобто зменшення струму із-за нерівності хімічних процесів.

Таким чином, ефективний ККД

. (3.9)

Для сучасних паливних елементів (в яких паливо – водень, а окислювач – кисень) значення ефективного ККД досягає 60-70%.

Таким чином, робота електричних сил Lел в залежності від знака теплоти може бути менш, більш або дорівнюватися повній ентальпії у реакції

. (3.10)

Теоретично робота електричних сил дорівнюється добутку ЕРС на перенесений заряд

Lел = Е е n No= Е n Ф, (3.11)

де е =1,602 10-19 Кл – заряд електрона;

No=6,02 1026 І/моль – число Авогадро;

n – кількість електронів, яка звільняється при іонізації атома (валентність);

Ф=96,5×106 Кл/моль – число Фарадея, тобто кількість електроенергії, перенесеної при проходженні одного моля речовини.

В дійсному процесі паливного елемента на аноді іонізуються тільки ті атоми, у яких кінетична енергія більш роботи іонізації, тобто N<N0. Із-за неповної іонізації палива і внутрішнього падіння напруги робота електричних сил буде менш ніж в ідеальному процесі

. (3.12)

Ефективним ККД паливного елемента називається відношення роботи електричних сил

в дійсному процесі до змінення повної ентальпії в хімічній реакції

. (3.13)


4. СИСТЕМИ ЕЛЕКТРОХІМІЧНИХ ГЕНЕРАТОРІВ

Електрохімічний генератор становить з себе джерело енергії, яке складається з батареї паливних елементів і систем, які забезпечують її нормальне функціонування при зміні навантаження і зовнішніх умов експлуатації.

На цей час відома значна кількість різних типів паливних елементів. Вони розподіляються по роду палива і стану електроліту, температур і тиску робочого процесу, виду електродів і інше:

– газоподібне, рідинне чи тверде пальне (наприклад, водень, гідразін, вуглець, алюміній); газоподібні чи рідинні окислювачі (наприклад, кисень, перекис водню, азотна кислота);

– кислотні, лужні, рідинні чи тверді електроліти, елементи з газообмінними мембранами;

– низькотемпературні (tp<=100-150°С), середньотемпературні (tp=200-300°С) а також високотемпературні (tp>300°С).

Для використання в космічній енергетиці більш за все розроблені водень-кисневі низько- і середнє температурні паливні елементи з лужним електролітом і іонообмінними мембранами.

Головне призначення електродів складається з забезпечення протікання електрохімічної реакції на межі поділу трьох фаз: твердого тіла (матеріал електроду неприйма участі в реакції), рідини (електроліт) і газу (компоненти H2 і О2).

Для прискорення швидкості реакції в матеріал електроду добавляють каталізатори (срібло, платину, паладій) До важливіших функцій каталізатора відносяться хемосорбція реагентів на поверхні електродів, ініційовання реакцій на межі поділу фаз за рахунок розщеплення адсорбованих молекул на атоми, зниження енергії іонізації. Крім того каталізатор повинен мати високу електронну провідність, а також сумісність з електролітом.

В паливних елементах з газовим паливом найбільше розповсюдження мають трьохфазні електроди, які являють собою пористі тіла у вигляді диска, циліндра, пластини та інше. Діаметр пор коливається від одиниць до десятків мкм, а товщина пластини 1 - 3 мм.

Тому як в електроліті містяться гідроксильні групи (ОН), то утворення води відбувається на аноді безпосередньо на межі поділу газ-рідина. Вода може розбавляти електроліт або випаровуватися.

Практично газодифузійні електроди виготовляють шляхом спікання порошкових матеріалів. Вони мають пори різного діаметра, при цьому доцільно з боку електроліту мати пористу структуру („запорний” шар) з діаметром пор до 2-3 мкм, а з боку газа – грубу структуру („робочий” шар) з діаметром пор 20-30 мкм. Для одержання необхідних потужностей послідовно поєднують декілька паливних лементів.