Смекни!
smekni.com

Аэродинамические способы повышения эффективности систем пылеулавливания в химической промышленности (стр. 2 из 6)

2. Пылегазовые выбросы технологических агрегатов

Производство огнеупорных изделий – сложный технологический процесс, связанный с обработкой сырья с различными физико-механическими свойствами и с использованием достаточно сложного технологического оборудования и вспомогательных механизмов. Эти процессы (дробление, помол, сортировка, транспортирование и смешение материалов) связаны с пылевыделением. Выброс пыли происходит и в результате механического уноса фракций газовыми потоками аспирационных систем.

Основными характеристиками пыли, которые следует учесть при усовершенствовании аэродинамических условий эксплуатации систем пылеулавливания в огнеупорном производстве, являются плотность, угол естественного откоса, слипаемость, смачиваемость, абразивность, дисперсность, химический состав, удельное электрическое сопротивление.

Плотность материала частиц пыли определяется пикнометрическим методом. Метод заключается в определении объема жидкости, вытесненной пылью, масса которой известна. Частное от деления массы пыли на вытесненный ею объем жидкости, представляет собой плотность материала частиц пыли. Насыпная плотность пыли определяется по массе известного объема пыли и предусматривает оценку двух величин насыпной плотности: свободно засыпанного и уплотненного слоя пыли. Важное значение при сборе и хранении уловленной пыли имеет угол естественного откоса.

Углом естественного откоса называется угол между горизонтальной поверхностью и образующей конуса насыпанного на нее порошкообразного материала. Различают собственно угол естественного, откоса (αдин ) и угол обрушения (αст). Первая величина относится к случаю сформирования откоса при падении частиц порошка на плоскость. Образование поверхности откоса соответствует состоянию динамического равновесия, поэтому αдин называют также динамическим углом естественного откоса. Углом обрушения называют угол, образующийся при обрушении слоя в результате удаления подпорной стенки. Его также называют углом естественного откоса αст.

Смачиваемость пыли определяется методом пленочной флотации. Метод основан на определении доли массы затонувших за определенное время частиц пыли, насыпанной тонким слоем на поверхность воды.

Метод определения слипаемости пыли основан на измерении усилия, необходимого для разрыва специально сформированного слоя пыли определенной площадки. Оценка абразивности пыли состоит в определении степени абразивного износа пластинки из исследуемой марки стали (пластинка располагается под углом 45° к пылевой струе). Испытания образца проводятся с помощью абразивметра центробежного типа.

Дисперсный состав пылей определяют различными способами – от ситового анализа до использования струйного сепаратора (импактора).

Ситовый анализ уловленной пыли основан на механическом разделении частиц по крупности путем просева через сита с различными размерами отверстий.

Анализ пыли струйным сепаратором (импактором) основан на инерционном осаждении взвешенных частиц на плоскую поверхность в результате резкого изменения направления движения запыленного потока при обтекании им плоской поверхности и на последующем определении массы частиц, осевших на эту поверхность.

В процессе пылеулавливания физико-механические свойства пыли, меняются.

Слипаемость пыли ухудшает аэродинамические свойства и надежность пылеуловителей за счет изменения геометрии рабочих сечений аппаратов. По существующей классификации пыль огнеупорного производства по степени слипаемости разделяют на 4 группы: I - неслипающаяся, II - слабослипающаяся; III - среднеслипающаяся; IV- сильнослипающаяся.

Классификация охватывает пыль 30 видов технологических операций огнеупорного производства и составлена на основе сведений о поведении пылей, полученных при эксплуатации систем пылеулавливания в огнеупорном производстве [1].

В табл. 2.1 приведены сведения об аутогезионной прочности пылей, отобранных из циклонов и электрофильтров.

Таблица 2.1

Аутогезионная прочность пыли, отобранной из циклонов и электрофильтров

Пыль Место отбора пробы Аутогезионная прочность слоя пыли, мг/см2 Группа слипаемости
Магнезитовая ЭлектрофильтрI полеII поле 34004960 IIIIII
Известковая Циклон 408 II
Доломитовая ЭлектрофильтрI полеII полеIII поле 207266320 IIIIII
Шамотная после электрофильтра 339 II

Из табл. 2.1 следует, что большинство пылей огнеупорного производства относится к слабо- и среднеслипающимся пылям. Повышенное значение аутогезионной прочности у магнезитовой пыли создает определенные трудности при эксплуатации систем пылеулавливания и требует особого внимания к аэродинамическим условиям эксплуатации пылеуловителей.

Почти все пыли огнеупорного производства склонны к гидратации: поэтому величины истинной и насыпной плотности резко различаются между собой.

Так, для шамотной, доломитовой, известняковой и магнезитовой пыли насыпная плотность составляет 900-1100 кг/м3, а истинная – 2120-2900 кг/м3.

В широких пределах, меняется и абразивность пылей. Поэтому при больших скоростях пылегазового потока (12-20 м/с) наибольшему износу за счет абразивности пыли подвержены внутренние стенки газоходов и аппаратов.

Установлено, что при улавливании магнезитовой пыли в циклонах НИИОГАЗ увеличение условной скорости до 7 м/с не приводит к износу аппарата, тогда как при улавливании доломитовой пыли скорость газа в циклонах не должна превышать 4 м/с.

Интенсивность абразивного износа зависит и от дисперсного состава пыли. Крупные частицы при повороте пылегазового потока в большей степени отклоняются от первоначального направления своего движения, чем мелкие, создавая условия для абразивного износа. При этом форма и геометрические параметры рабочего сечения, а следовательно, и аэродинамика потока меняются. Абразивность пыли создает трудности при пневмотранспорте уловленной пыли. Высокая концентрация пыли приводит к частым остановкам системы вследствие износа трубопроводов. Дисперсный состав пылей огнеупорного производства зависит от технологического процесса, режима работы, химических свойств, зернового состава сырья, организации аспирационных выбросов.

Грубые частицы пыли являются продуктом механического уноса сырьевой смеси и несгоревшего топлива.

Более тонкие пыли (высокодисперсные аэрозоли) образуются в результате уноса потоком частиц обжигаемого материала из активной зоны печи. Частицы размером свыше 100 мкм осаждаются в пылевой камере. Некоторая часть крупных частиц остается в боровах котлов-утилизаторов и подводящих газоходах.

Концентрация пыли в дымовых газах шахтных печей не превышает 12-15 г/нм3. Относительно небольшая запыленность газа позволяет установить за шахтными печами электрофильтр, требующий особого внимания к аэродинамике пылегазового потока

Химический состав пылей, образующихся при производстве огнеупоров, зависит от вида перерабатываемого сырья и сжигаемого топлива, как это показано в табл. 2.2 [1].

Таблица 2.2

Химический состав пылей, образующихся при производстве огнеупоров

Примечание. Числитель – при сжигании высокосернистого мазута, знаменатель – природного газа.


Данные, приведенные в табл. 2.2, были использованы авторами при выборе материалов для изготовления устройств, обеспечивающих выравнивание пылегазового потока.

Одним из существенных факторов при проектировании и эксплуатации газораспределительных устройств после электрофильтров является удельное электрическое сопротивление пыли. Следует отметить, что в интервале температур 130-180°С значения удельного электрического сопротивления почти всех пылей огнеупорного производства оказываются выше критического (1010-1011 ом·см), что позволяет рассчитывать на успешное применение газораспределительных устройств.

В таблице 2.3 приведены значения удельного электрического сопротивления пылей огнеупорного производства и соответствующие им значения влагосодержания и температуры.

Таблица 2.3

Удельное электрическое сопротивление пыли, образующихся при производстве огнеупорных изделий

Данные о содержании влаги в дымовых газах используют при выборе рабочих температур для газоходов, пылеулавливающих аппаратов и аэродинамических газораспределительных устройств.

При рабочей температуре, близкой к точке росы, происходит налипание пыли и коррозия стенок аппаратов, газоходов и вспомогательных устройств. Поэтому при проектировании и эксплуатации систем и аппаратов пылеулавливания наибольший интерес представляют сведения о точке росы газов, подлежащих очистке. Для пылей глины, известняка, доломита и магнезита точка росы пылегазовых потоков, как показано в [5], меняется в пределах от 39°С до 58°С.