Смекни!
smekni.com

Аэродинамические способы повышения эффективности систем пылеулавливания в химической промышленности (стр. 3 из 6)

Низкое значение точки росы газов позволяет организовать работу и соответствующих газораспределительных устройств при температурах ниже 100° С. Это имеет большое значение, так как снижение температуры заметно уменьшает объемы дымовых газов, подлежащих обеспыливанию.

3. Аэродинамические проблемы эксплуатации пылеуловителей

В производстве огнеупоров пылеулавливание является неотъемлемой частью технологического процесса, так как сырьевые материалы при их переработке находятся во взвешенном состоянии и необходимо максимальное извлечение их из газовой среды.

Поэтому должно быть обеспечено эффективное пылеулавливание не только по санитарным, но и по технологическим соображениям. Выбор схемы начинается с анализа исходных данных. Физико-химические свойства газов и пыли позволяют выбрать дополнительные устройства, тягодутьевое оборудование и конструкционные материалы для изготовления аппаратов и газораспределительных устройств.

После оценки гидравлического сопротивления и ожидаемой эффективности выбранных аппаратов формулируют дополнительные требования к газораспределительным устройствам.

В табл. 3.1 приведены ориентировочные сводные данные об эффективности различных пылеуловителей, используемых в огнеупорной промышленности.


Таблица 3.1

Ориентировочная эффективность различных пылеуловителей в огнеупорном производстве

При выборе аппаратов, указанных в табл. 3.1, учитывают и аутогезионные свойства пыли, чтобы исключить залипание рабочих элементов (рукавов, осадительных и коронирующих электродов), коммуникаций, дополнительного оборудования и транспортных приспособлений. Абразивные пыли приводят к истиранию рабочих поверхностей, что вызывает перераспределение скоростей пылегазового потока в рабочем сечении аппарата и резкое ухудшение аэродинамических условий разделения газовой гетерогенной системы с твердой дисперсной фазой, приводящее к снижению эффективности пылеуловителя.

Таким образом, разработка способов оптимизации аэродинамических условий эксплуатации систем пылеулавливания, что является предметом настоящей работы, является непременным условием обеспечения их эффективности.

С учетом современных тенденций [6] эта задача актуальна для фильтрующих и других аппаратов полочного типа с насыпными слоями зернистых (кусковых) тел, для аппаратов радиального типас прохождением потока через боковую проницаемую поверхность, состоящую из слоя сыпучих или цементированных тел, ткани, волокон, различной набивки, сеток, решеток и т.п., для коллекторных систем с равномерной раздачей потока и, конечно, для электрофильтров с их исключительным разнообразием условий подвода пылегазового потока.

Поэтому особый интерес представляет анализ механизма растекания пылегазового потока по распределительным устройствам.

Во многих случаях выравнивание потока может быть достигнуто с помощью специальных направляющих устройств (лопатки, разделительные стенки и пр.)

Выравнивание потока может быть осуществлено также с помощью сопротивлений, рассредоточенных по сечению. В качестве таких сопротивлений используют различные виды решеток или сеток, насыпные слои кускового или сыпучего материала и др.

Квалифицируя зернистые слои как весьма перспективные способы пылеулавливания в огнеупорном производстве, рассмотрим схему протекания пылегазового потока через такие слои, как это показано на рис. 3.1 [7].

При толщине слоя с коэффициентом сопротивления, соответствующим оптимальному значению (рис. 3.1, а), пылегазовый поток, набегая узкой струей, постепенно растекается от сечения к сечению и за слоем устанавливается наиболее равномерное поле скоростей. С увеличением толщины слоя, а следовательно, и значения степень растекания перед фронтом слоя будет возрастать до тех пор, пока узкая струя, набегающая на слой, не станет растекаться по его фронту полностью (рис. 3.1, б). Это растекание происходит так, что периферийная часть струи устремляется к стенке канала почти параллельно фронту слоя. В результате в первых внутренних сечениях слоя профиль скорости становится неравномерным с повышенными значениями в центральной и пристенной областях (рис. 3.1, б и в). В следующих сечениях слоя характер профиля скорости будет меняться под влиянием многих факторов, одним из которых является пристенный эффект. При этом в зависимости от формы, шероховатости и других особенностей частиц (зёрен) слоя влияние стенки сказывается либо на очень узкую область сечения (0,5 - 5,0)d3, либо на широкую (несколько десятков диаметров зёрен). Наибольшая проницаемость слоя получается у самой стенки (ε ≈ 1).

Повышенная проницаемость слоя вблизи стенки аппарата обусловлена и частицами слоя [8]. Переменная по сечению пористость обусловливает переменное сопротивление и приводит к перетеканию части газа из центральной области к периферии. При этом скорости в центральной области уменьшаются, а в пристенной еще более возрастают, и на выходе из слоя устанавливается профиль скорости вогнутой формы с резко повышенной скоростью у стенки.

Форма профиля скорости 2, показанная на рис. 3.1, б, будет иметь место только в том случае, когда упаковка слоя остается неизменной после его засыпки. Если в процессе эксплуатации под действием тех или иных факторов первоначальная упаковка и проницаемость слоя будут изменены, то распределение потока в нем получится еще более неравномерным (рис. 3.1, в). Если поток движется в аппарате сверху вниз и проходит слой, лежащий на сетке или перфорированном листе (решетке), то не исключена возможность полного или частичного перекрытия частицами слоя проходных отверстий сетки или решетки. Тогда возникает дополнительная неоднородность слоя [9].

Все эти факторы создадут аналогичную неравномерность распределения скоростей в слое также и при набегании на него потока полным сечением (см. рис. 3.1, г).

При указанных условиях в сечениях за слоем профиль скорости будет дополнительно деформироваться еще и вследствие эффекта подсасывания. Поэтому профили скорости, измеренные за слоем, не будут точно отражать истинного распределения скоростей внутри слоя (см. кривые 2 и 3, рис. 3.1, б и г).

Для устранения или уменьшения влияния пристенного эффекта на протекание жидкости через насыпной слой можно разделить поперечное сечение перфорированными листами или сетками 4 (см. рис. 3.1, д) переменного живого сечения. Это приведет к увеличению сопротивления вблизи стенки и к устранению возникающей неравномерности распределения скоростей. Перетекание жидкости к стенке можно предотвратить вертикальными перегородками 5, установленными вдоль слоя (см. рис.3.1,е).

Эффективным и простым способом уменьшения пристенного эффекта может быть установка узких колец на определенном расстоянии одно от другого вдоль слоя. Такие кольца увеличат сопротивление проходу газа через пристенные каналы и уменьшат возможность перетекания ее к стенкам аппарата.

Исследования аэродинамики зернистых слоев, расположенных на различном расстоянии от центрального входа струи [12], показали, что с ростом значений Re неравномерность распределения скоростей уменьшается. Практический интерес представляет качественная и количественная оценка пристеночного эффекта, являющегося источником существенной неравномерности поля скоростей. Отмечается [13] несимметричный профиль и резкое повышение скоростей и массовой концентрации дисперсной фазы в пристеночной зоне, возрастающее с уменьшением комплексаDслоя/d3.В [14] обсуждается влияние шероховатости стенок на потери напора и распределение скоростей при фильтровании воздуха через неподвижные и движущиеся зернистые слои; отмечается снижение перепада давлений в цилиндрическом аппарате при переходе от неподвижного к движущемуся слою с одновременным увеличением пристеночного эффекта.

Очень показательны результаты опытов по выявлению характера зависимостиwi/wK = φ(y/Re) за слоевой насадкой с диаметром зерна d3от 0,6 до 25 мм при 177 <Re < 2850 [7].

С уменьшением диаметра зерен и резким увеличением ξсл коэффициент сопротивления проходных каналов у самой стенки ξкан меняется незначительно, так как сопротивление трения на самой стенке не зависит от d3. Это и приводит к резкому возрастанию степени перетекания газа к стенке при пониженииRe с уменьшением d3 [15].

Рис. 3.1. Схема протекания потока через насыпной слой [7]:

а – узкая струя, слой с оптимальным коэффициентом сопротивления (ξсл= ξопт); б – то же, ξсл > ξопт и при влиянии только стенки аппарата;в – то же, при дополнительном влиянии неоднородности слоя; г – однородный поток, влияние стенки аппарата; д – с решетками переменного сопротивления; е – с продольными разделительными стенками; 1 – зона, не продуваемая потоком, или со сниженными скоростями; 2 – примерный профиль скорости непосредственно на выходе из слоя; 3 – то же, на небольшом расстоянии за ним; 4 – решетка; 5 – продольная стенка; 6 – профиль скорости внутри слоя; 7 – кольцевое ребро.

В методическом плане исследования аэродинамики зернистых слоев требуют определения степени неравномерности распределения пористости в зернистых фильтрующих слоях насыпного или связанного типа. Для решения этой задачи применяют традиционные способы – микрофотографию, жидкостную порометрию отдельных образцов под вакуумом или давлением, наполнение пор отдельных образцов люминофором и регистрацию яркости свечения люминофора после облучения образца источником ультрафиолетового света, анализ локальной пористости путем измерения расхода газа через небольшие площади пористой поверхности с последующим использованием для расчета кинетических закономерностей Дарси, гидростатическое взвешивание отдельных частей образца, электромагнитную дефектоскопию [10].