Смекни!
smekni.com

Вибір оптимальних режимів як метод підвищення стійкості і жорсткості технологічної системи при чорновому обробленні на верстатах з числовим програмним керуванням (стр. 3 из 3)

Порівняння результатів моделювання з експериментальними даними, подане на, показує, що спрогнозована межа динамічної стійкості процесу кінцевого фрезерування для вибраних умов оброблення цілком адекватна експерименту. Дійсно, вона проходить або між експериментальними точками діаграми, в одній з яких спостерігається динамічно стійке фрезерування, в іншій – динамічно нестійке. В експерименті, як і було спрогнозовано, область динамічної стійкості розміщується під межею динамічної стійкості – в області малого значення глибини і ширини фрезерування. При цьому лише 15% експериментально перевірених точок не збігаються з прогнозованою межею динамічної стійкості.

Дослідження впливу сталої часу стружкоутворення показали, що з її підвищенням до величини сумірної з періодом автоколивань відбувається розширення області режимів різання динамічно стійкого фрезерування . Окрім цього, на менших частотах обертання шпинделя відбувається збільшення динамічної стійкості ТС, що пов’язано з урахуванням нелінійної залежності сталої часу стружкоутворення від швидкості різання.

1 – Tp=0 мс; 2 – Tp=0,02 мс; 3 – Tp=0,1 мс; 4 – Tp=0,5 мс; 5 – Tp=1; 6 – Tp=2 мс

Як показали дослідження , з підвищенням величини обертової подачі відбувається розширення області режимів різання динамічно стійкого фрезерування до автоколивань, що пов’язано з урахуванням нелінійної залежності Р(а).

Розроблена методика вибору режимів різання для чорнового кінцевого фрезерування сталей з метою забезпечення максимальної продуктивності на основі прогнозування динамічної стійкості процесу до автоколивань.Виходячи з неї, ширина та глибина фрезерування визначаються за діаграмами динамічної стійкості конкретної ТС для деяких частот обертання шпинделя. Подача розраховується для кожної частоти обертання з урахуванням вибраної ширини та глибини фрезерування, при цьому вона обмежується ресурсом інструменту, його міцністю та можливостями верстата. Остаточно із отриманого ряду беруться режими різання, які забезпечують мінімальний основний час при заданому ресурсі інструменту

Особливості застосування методики показані на прикладі чорнового оброблення деталі типу «Лопатка». Режим різання, який був визначений за допомогою розробленої методики, дав можливість скоротити основний час оброблення.


Висновки

1. Для підвищення ефективності процесу чорнового кінцевого фрезерування виконане теоретичне дослідження, яке дозволило спрогнозувати динамічну стійкість технологічної системи з урахуванням податливості всіх її елементів, конструкції кінцевої фрези, нелінійної залежності сили різання та постійної часу стружкоутворення від товщини зрізу та швидкості різання. Зазначені параметри силової взаємодії зубця фрези із заготовкою і сталу часу стружкоутворення запропоновано визначати за допомогою імітаційного моделювання процесу різання за діаграмою зростання сили різання. Для визначення динамічної податливості технологічної системи розроблена спеціальна експериментальна установка, яка дає можливість урахувати всі елементи технологічної системи. При цьому експериментальна оцінка динамічної стійкості технологічної системи проводиться за результатами аналізу сигналу акустичного випромінювання процесу кінцевого фрезерування.

2. У результаті аналізу вітчизняних і зарубіжних публікацій, присвячених сучасному стану питання про підвищення динамічної стійкості процесу кінцевого фрезерування, встановлено, що одним з найбільш істотних чинників, які впливають на коливання технологічної системи, є режими різання. Встановлено, що найбільш простим і поширеним методом забезпечення динамічної стійкості технологічної системи є прогнозування областей режимів різання динамічно стійкого кінцевого фрезерування за допомогою аналізу діаграм динамічної стійкості технологічної системи.

3. Розроблені узагальнена математична модель і алгоритм розрахунку для побудови діаграми динамічної стійкості кінцевого фрезерування для фрез із прямими зубцями, з гвинтовими зубцями, з плоским та сферичним торцями, у тому числі і із змінними непереточуваними пластинами. На відміну від відомих рішень розроблений алгоритм може бути використаний для прогнозування межі динамічної стійкості при фрезеруванні в умовах, коли відбувається різання одночасно декількома зубцями фрези. У моделі також враховано вплив швидкості різання на силу різання і постійну часу стружкоутворення, нелінійна залежність сили різання від товщини зрізу, запізнювання сили різання стосовно зміни товщини зрізу.


Література

1. Залога В.А., Криворучко Д.В., Емельяненко С.С., Голдун Д.Г. Анализ экономической эффективности высокоскоростного фрезерования // Вісник Сумського державного університету. Серія Технічні науки (Машинобудування). – Сумы: Изд-во СумГУ, 2005. – № 11 (83). – С. 72–78.

2. Криворучко Д.В., Залога В.А., Емельяненко С.С. Методика прогнозирования устойчивости процесса фрезерования концевыми фрезами // Сучасні технології у машинобудуванні: Збірник наукових праць. – Харків: НТУ «ХПІ», 2007. – С. 39-48.

Y. Altintas.

3. Залога В.А., Криворучко Д.В., Емельяненко С.С., Голдун Д.Г. К вопросу определения передаточной функции процесса резания при фрезеровании // Вісник Сумського державного університету. Серія Технічні науки. – Сумы: Изд-во СумГУ, 2007. – № 1. – С. 80–92.