2.2 Расчет диады 4-5
Для расчета этой диады изобразим ее со всеми приложенными к ней силами: силами тяжести, полезного сопротивления и реакциями.
Эти реакции в поступательных парах известны по направлению, но неизвестны по модулю. Определяем с помощью плана сил. Составим уравнение равновесия диады 4-5.
Строим план сил диады в масштабе сил
Уравнение содержит три неизвестных, поэтому составляем дополнительное уравнение равновесия в форме моментов сил относительно точки С.
Рассчитаем вектора сил
Строим план сил по уравнению сил, в том порядке как силы стояли в уравнении.
Значения сил из плана сил
Для рассмотрения внутренних реакций в диаде 4-5 необходимо рассмотреть равновесие одного звена, звена 4.
2.3 Расчет диады 2-3
Изобразим диаду со всеми приложенными к ней силами. В точках А и О2 взамен отброшенных связей прикладываем реакции
и . В точке В прикладываем ранее найденную реакцию . Составляем уравнение равновесия диады 2-3.Плечи измеряем на плане. Теперь в уравнении сил две неизвестных, поэтому строим план сил и определяем реакцию
, как замыкающий вектор.Строим план диады в масштабе сил
. Значения сил из плана сил.2.4 Расчет кривошипа
Изобразим кривошип с приложенными к нему силами и уравновешивающей силой
, эквивалентной силе действия на кривошип со стороны двигателя. Действие отброшенных связей учитываем вводя реакции и . Определяем уравновешивающую силу, считая, что она приложена в точке А кривошипа, перпендикулярно ему. Составляем уравнение равновесия кривошипа.Значение силы определяем из плана сил.
2.5 Определение уравновешивающей силы методом Жуковского
Строим повернутый на 900 план скоростей и в соответствующих точках прикладываем все внешние силы, включая
и силы инерции. Составим уравнение моментов относительно точки , считая неизвестной:Подлинность графического метода:
2.6. Определение мощностей
Потери мощности в кинематических парах:
Потери мощности на трение во вращательных парах:
где
- коэффициент - реакция во вращательной паре, - радиус цапф.Суммарная мощность трения
Мгновенно потребляемая мощность
Мощность привода, затрачиваемая на преодоление полезной нагрузки.
2.7 Определение кинетической энергии механизма
Кинетическая энергия механизма равна сумме кинетических энергий входящих в него массивных звеньев.
Приведенный момент инерции
3 Геометрический расчёт эвольвентного зубчатого зацепления. Синтез планетарного редуктора
3.1 Геометрический расчёт равносмещённого эвольвентного зубчатого зацепления
Исходные данные:
число зубьев шестерни: Z
=14число зубьев колеса: Z
=28модуль зубчатых колёс: m=4мм
Нарезание зубчатых колес производится инструментом реечного типа, имеющего параметры:
- коэффициент высоты головки зуба - коэффициент радиального зазора - угол профиля зуба рейкиСуммарное число зубьев колёс:
поэтому проектирую равносмещённое зацепление.Делительно-межосевое расстояние:
ммНачальное межосевое расстояние:
ммУгол зацепления:
Высота зуба:
ммКоэффициент смещения:
Высота головки зуба:
мм ммВысота ножки зуба:
мм ммДелительный диаметр:
мм ммОсновной диаметр:
Диаметры вершин:
мм ммДиаметр впадин:
мм ммТолщина зуба:
мм ммДелительный шаг:
ммОсновной шаг:
ммРадиус галтели:
Коэффициент перекрытия:
Коэффициент перекрытия, полученный аналитически:
Масштабный коэффициент построения зацепления:
3.1.1 Расчёт равносмещённого эвольвентного зубчатого зацепления на ЭВМ
PublicSubprogramma()
m = 4
Z1 = 14
Z2 = 28
ha = 1
c = 0.25
N = (20 * 3.14159) / 180
a = 0.5 * m * (Z1 + Z2)
h = 2.25 * m
x1 = (17 - Z1) / 17: x2 = -x1
ha1 = m * (ha + x1): ha2 = m * (ha + x2)
hf1 = m * (ha + c - x1): hf2 = m * (ha + c - x2)
d1 = m * Z1: d2 = m * Z2
db1 = d1 * Cos(N): db2 = d2 * Cos(N)
da1 = d1 + 2 * ha1: da2 = d2 + 2 * ha2
df1 = d1 - 2 * hf1: df2 = d2 - 2 * hf2
S1 = 0.5 * 3.14159 * m + 2 * x1 * m * Tan(N): S2 = 0.5 * 3.14159 * m + 2 * x2 * m * Tan(N)