Смекни!
smekni.com

Привод ленточного транспортера (стр. 4 из 4)

σa = σи = Ми / (0,1* d3) = 13,6 МПа

σm – среднее напряжение цикла нормальных напряжений:

σm = 4* Fa / (π * d2) = 0

ψσ = 0,25

Sσ = 10,05.

Коэффициент запаса прочности по касательным напряжениям:

Sσ = τ-1/ [kτ*τa /(ετ*β) + ψτ*τm],

где τ-1 = 250 МПа – предел выносливости стали,

kτ = 1,48

ετ = 0,73

β = 0,95

τa = τm = 0,5* T / (0,2* d3) = 0,62 МПа

ψτ = 0,1

Sτ = 180,5.

S = 10,03 > [S].

Проверим выбор подшипника.

Посадочный диаметр d = 35 мм, лёгкая серия 207 (Сr = 25,5 кН, С0r = 13,7 кН).

Номинальная долговечность (ресурс) подшипника в миллионах оборотов:

L = (Сr/P)p,


где Сr = 25,5 кН – динамическая грузоподъёмность по каталогу,

Р – эквивалентная динамическая нагрузка,

р = 3 – показатель степени для шарикоподшипников.

Номинальная долговечность в часах:

Lh = 106*L/ (60*n) = 106 * (Сr /P)p / (60*n)

Для определения эквивалентной нагрузки находим отношение:

Fa/(V*Fr) = 0 < e ,

значит X = 1, Y = 0; Кб = 1,4, Кт = 1.

Р = V*Fr *KБ*КТ = 3068,8 Н

L = 574,2 (млн.об.)

Lh = 56890 ч.

Т.к. Lh > [Lh] , то выбранный подшипник подходит

Тихоходный вал:

Fц = 4127 H

Ft = 5444 H

Fr = 2192 H

Fa = 2575 H

d1 = 86 мм

a = 125 мм

b = 125 мм

c = 80 мм

Найдём радиальные реакции в опорах вала:

FцY = Fц * cos300 = 3574 H

FцZ = Fц * sin300 = 2064 H

Вертикальная плоскость:

∑МВ = 0; FцZ*c + ZA*(а+b) - Fr*b = 0

ZA = - 436 H

∑МA = 0; FцZ*(a+b+c) + ZB*(a+b) + Fr*a = 0

ZB = - 4012 H

Горизонтальная плоскость:

∑МВ = 0; - YA* (a+b) - Ft * b - FцY*c = 0

YA = - 3866 H

∑МA = 0; Ft * a + YB* (a+b) - FцZ*(a+b+c) = 0

YB = 1996 H

Суммарные радиальные реакции:

RA = √( YA2 + ZA2) = 3890 Н

RВ = √( YВ2 + ZВ2) = 4481 Н

Эпюры изгибающих моментов:

Мy :

AC: 0 ≤ х1 ≤ a; Мy (х1) = ZA * х1 ,

Мy (0) = 0, Мy (a) = - 54,5 Н*м

DB: 0 ≤ х2 ≤ c; Мy (х2) = - FцZ* х2,

Мy (0) = 0, Мy (c) = - 165 Н*м

BC: 0 ≤ х3 ≤ b; Мy (х3) = - FцZ* (c+х3) – ZB * x3,

Мy (0) = - 165 Н*м, Мy (b) = 78 Н*м

Мz :

AC: 0 ≤ х1 ≤ a; Мz (х1) = -YA* х1,

Мz (0) = 0, Мz (а) = - 483 Н*м

DB: 0 ≤ х2 ≤ c; Мz (х2) = FцY* х2,

Мz (0) = 0, Мz (c) = 286 Н*м

BC: 0 ≤ х3 ≤ b; Мz (х3) = FцY* (c+х2) - YВ* х3,

Мz (0) = 286 Н*м, Мz (b) = 483 Н*м

Эпюра крутящего момента T:

CB: 0 ≤ х ≤ b; T = Fa*0,5 d1 = 75 Н*м;

Эпюра суммарного изгибающего момента МИ:

МИ = √(Мy2 + Мz2)

МИ (A) = МИ (D) = 0; МИ (C) = 975 Н*м.; МИ (B) = 330 Н*м.

Проверка вала по напряжениям изгиба:

Mэк = Mэк (D) = √( МИ2 + Т2) = 978 Н*м.

32*Mэк/(π*d13) ≤ [σ]F

51 МПа ≤ [σ]F

Расчет вала на сопротивление усталости.

Проверочный расчет вала, заключающийся в определении коэффициента прочности в опасном сечении, выполняют по формуле:

S = Sσ * Sτ / √( Sσ2 + Sτ2) ≥ [S]


Допускаемый коэффициент запаса прочности:

[S] = 1,5 ÷ 2,5

Коэффициент запаса прочности по нормальным напряжениям:

Sσ = σ-1/ [kσ*σa /(εσ*β) + ψσ*σm],

где σ-1 = 420 МПа – предел выносливости стали,

kσ = 1,8 - эффективный коэффициент концентрации нормальных напряжений,

εσ = 0,7 – масштабный фактор для нормальных напряжений,

β = 0,95 – коэффициент, учитывающий влияние шероховатости,

σa – амплитуда цикла нормальных напряжений:

σa = σи = Ми / (0,1* d3) = 50 МПа

σm – среднее напряжение цикла нормальных напряжений:

σm = 4* Fa / (π * d2) = 0

ψσ = 0,25

Sσ = 3,1.

Коэффициент запаса прочности по касательным напряжениям:

Sσ = τ-1/ [kτ*τa /(ετ*β) + ψτ*τm],

где τ-1 = 250 МПа – предел выносливости стали,

kσ = 1,37

ετ = 0,7

β = 0,95

τa = τm = 0,5* T / (0,2* d3) = 0,96 МПа

ψτ = 0,1

Sτ = 120,6.

S = 3,1 > [S].

Проверим выбор подшипника.

Посадочный диаметр d = 50 мм, лёгкая серия 7210 (Сr = 56 кН, С0r = 40 кН).

Номинальная долговечность (ресурс) подшипника в миллионах оборотов:

L = (Сr/P)p,

где Сr = 56 кН – динамическая грузоподъёмность по каталогу,

Р – эквивалентная динамическая нагрузка,

р = 10/3 – показатель степени для роликоподшипников.

Номинальная долговечность в часах:

Lh = 106*L/ (60*n) = 106 * (Сr /P)p / (60*n)

Для определения эквивалентной нагрузки находим отношение:

Fa/(V*Fr) = 0 < e ,

значит X = 1, Y = 0, ( e = 0,374); Кб = 1,4, Кт = 1.

Р = V*Fr *KБ*КТ = 3068,8 Н

L = 15998 (млн.об.)

Lh = 5235290 ч.

Т.к. Lh > [Lh] , то выбранный подшипник подходит

Расчет на жесткость.

Момент инерции сечения:

Модуль упругости:

Допустимые значения углов поворота в местах расположения подшипников:

Допустимый прогиб валов под колесами:

(для цилиндрических зубчатых колес);

Углы поворота и прогибы от действия силы Ft:


Углы поворота и прогибы от действия силы Fk:

Углы поворота от действия силы FY:

Суммарный угол поворота сечения:

,
,

Суммарный прогиб точки В:


Ни в одном из сечений углы поворота и прогибы не превышают допустимых значений.

УСТАНОВКА КОЛЁС НА ВАЛАХ

1) Подбор посадки с натягом для тихоходного вала:

Тном = 498 Н*м – вращающий момент на колесе,

d = 60 мм – диаметр соединения,

dст = 80 мм – диаметр ступицы колеса,

l = 92 мм – длина сопряжения

Среднее контактное давление:

P = 2*103*К*Т/(π*d2*l*f),

где К – коэффициент запаса сцепления (К = 3,5)

P = 2*103*3*498/( π*502*92*0,14) = 23,93 МПа

Деформация деталей:

δ = 103*Р*d*(C1/E1 + C2/E2) = 31,25 мкм

С1 = (1 + (d1/d)2)/(1 - (d1/d)2)) – μ1 = 0,7

C2 = (1 + (d/d2)2)/(1 - (d/d2)2)) + μ2 = 3,87

E1 = E2 = 2,1*105

Поправка на обмятие микронеровностей:

u = 5,5*(Ra1 + Ra2) = 5,5*(0,8+0,8) = 8,8 мкм,


где Ra1 и Ra2 - средние арифметические отклонения профиля поверхностей.

Минимальный натяг, необходимый для передачи вращающего момента:

[N]min ≥ δ + u = 26,92 + 8,8 = 40,05 мкм

Максимальный натяг, допускаемый прочностью ступицы:

[N]max ≤ [δ]max + u = 223,09 мкм,

где [δ]max = [P]max* δ/P = 214,29 мкм – максимальная деформация;

[P]max = 0,5*σт2*(1 - (d/d2)2)) = 164,06 МПа – максимальное давление;

σт2 =750 МПа – предел текучести охватывающей детали.

Выбираем посадку: Н7/u7

Сила запрессовки:

FП = π*d*l*Pmax*fП = π*60*92*101,35*0,2 = 263,42 кН

Pmax = (Nmax – u)*P/ δ = 75,95 МПа

Температура нагрева охватывающей детали:

t = 200 + (Nmax + Zсб)/(103*d*α2) = 200 + (108 + 10)/(103*60*12*10-6) = 1840C

2) Расчет шпоночных соединений:

Напряжение смятия узких граней шпонки не должно превышать допускаемого, т.е. должно удовлетворяться условие:

σсм = 2*Т/(d*lp*(h – t1)) ≤ [σ]см,

где Т – передаваемый вращающий момент,

d – диаметр вала в месте установки шпонки,

lр = l – b – рабочая длина шпонки,

[σ]см = 100 МПа – допускаемое напряжение смятия.

Для промежуточного вала:

Т = 156,59 Н*м,d = 40 мм,lр = 33 мм,h = 8 мм,t1 = 5 мм,b = 12 мм

σсм = 79 МПа < 100 МПа

Шпонки устанавливаем с натягом Н7/р6.

РАСЧЕТ ПРЕДОХРАНИТЕЛЬНОЙ МУФТЫ

Предохранительные муфты с разрушающимся элементом применяют для предохранения от маловероятных перегрузок. Момент передается от одной муфты к другой двумя стальными штифтами, работающими на срез. Штифты срезаются при перегрузке. Для дальнейшего применения муфты срезанные штифты следует заменить новыми.

Во избежание случайных выключений за расчетный принимают момент

Tp = 1,25*Tmax = 1130,5 Н*м,

где Tmax = 904,37 Н*м – максимальный передаваемый момент при нормальной работе машины.

Расчетный (разрушающий) момент муфты:

Tp = (z*π*d2*τв ср*R) / (103*k*4),

откуда диаметр штифта в месте разрушения:

d = √[(4*103*Tp*k) / (π*z*τв ср*R)],

где z = 2 – число штифтов,

R = мм – радиус окружности расположения сечений среза штифта,

k = 1,2 – коэффициент неравномерности распределения нагрузки,

τв ср = с*σв – предел прочности штифта на срез (с = 0,8):

τв ср = 0,8*900 = 720 МПа.

d = 3,5 мм.


Список использованной литературы.

1. Мингазов М.Г. и др. «Проектирование механических передач». Учебное пособие для вузов. – Наб.Челны: Изд-во КамПИ, 2003г.

2. П.Ф.Дунаев, О.П.Леликов «Конструирование узлов и деталей машин» – М.: Высшая школа,1985г.

3. Шейблит А.Е. «Курсовое проектирование деталей машин» - М.: Высшая школа, 1980г.

4. Иосилевич Г.Б. Детали машин: Учебник для студентов машиностроит. спец. вузов. – М.: Машиностроение, 1988г.

5. Решетов Д.Н. «Детали машин». Учебник для вузов. Изд.4-е. - М., Машиностроение, 1989г.

6. А.Т. Батурин и др.«Детали машин». Изд.5-е. - М., Машиностроение, 1968г.