Смекни!
smekni.com

Привод цепного конвейера (стр. 2 из 5)

YR =1;

YX – коэффициент размеров, YX =1;

Yб - коэффициент, учитывающий чувствительность материала и концентрации напряжений, Yб =1;

SF – коэффициент запаса прочности, SF=1,7.

Коэффициент долговечности YNопределяют как:

(2.11)

где NFO- базовое число циклов нагружения, NFO =4×106;

N - эквивалентное число циклов нагружения;

m - показатель степени кривой выносливости; m=6 – улучшение, нормализация, т=9 –объемная и поверхностная закалка;

Эквивалентное число циклов нагружения Nопределяются по формуле:

(2.12)

При NFE>NFO коэффициент долговечности YN=1.

Шестерня Колесо
500-600МПа=550 МПа
NFE1=60·195,77·10161·(19·0,15++0,59·0,85)= 18,1·107NFE1> NFO => YN=1
500-600МПа=550 МПа
NFE2=60·48,94·10161·(19·0,15+0,59·0,85)==4,55·107NFE2> NFO => YN=1
323,5·1·1=323,5МПа
323,5·1·1=323,5МПа

2.3.4 Определение межосевого расстояния

(2,13)

где aw- межосевое расстояние, мм;

Ka - вспомогательный коэффициент, Ka = 450;

КН – коэффициент нагрузки;

ψa - коэффициент ширины.

Коэффициент ширины принимаем равным ψa=0,25;

Коэффициент нагрузки принимаем равным KH=1,4.

Из нормального ряда чисел принимаем

2.3.5 Определение модуля передачи

Для зубчатых колес при твердости зубьев

350 HB модуль назначают:

m = (0,01…0,02)аW, (2,14)

а при твёрдости >45 HRC

mn = (0,016-0,0315) aw (2,15)

mn = (0,016-0,0315)×100

mn = 1,6 – 3,15

Стандартное значение модуля m=2 (ГОСТ 9563-80).

2.3.5 Определение суммарного числа зубьев для косозубой передачи

zΣ = 2×aw/mn, (2,16)

2.3.7Определение числа зубьев шестерни

z1 = zΣ/(u+1) (2,17)

z1 = 100/5=20

Z1>Zmin, (2,18)

где Zmin=17 – для прямозубых передач.

Условие выполняется.

2.3.8 Определение числа зубьев колеса

z2 = zΣ- z1 (2,19)

z2= 100-20 =80

2.3.9 Определение геометрических размеров колес и шестерён

Делительные диаметры:

d=mn×z

d1=2×20=40 мм d2=2×80=160 мм

Диаметры вершин зубьев:

da = d+ 2·mn (2,20)

da1 = d1 + 2·mn = 40 + 2·2 = 44 мм;

da2 = d2 + 2·mn = 160 + 4 = 164 мм;

Диаметры впадин зубьев:

df = d– 2.5·mn (2,21)

df1 = d1 – 2.5·mn = 40 – 2,5·2 = 35 мм;

df2 = d2 – 2.5·mn = 160 – 2,5·2 = 155 мм;

Ширина колеса:

b2 = ψa · aW (2,22)

b2 = ψa · aW = 0.25·100 = 25 мм

Ширина шестерни:

b1 = b2 + 5мм (2,23)

b1 = b2 + 5 = 25 + 5 = 30 мм

2.3.10 Определение усилий в зацеплении

Окружное усилие:

Ft = (2×T) / d, (2,24)

где Ft- окружное усилие, кН;

T - крутящий момент на зубчатом колесе, Н • м;

d - делительный диаметр колеса, мм;

Ft = (2×51,22)/40 = 2,56кН

Радиальное усилие:

Fr=Ft• tgαw(2.25)

где aw - угол зацепления, aw =20°.

Fr=2,56•tg20 = 0,93 кН

2.3.11 Проверка зубьев колес по напряжениям изгиба

Для этого производят оценку изгибной прочности, т.е. находят отношения:

[σ]F1/YF1 и [σ]F2/ YF2 (2,26)

Коэффициенты формы зубьв YF1 и YF2 определяются по эквивалентному числу зубьев шестерни и колеса:

YF1=4,13 YF2=3,73

Расчёт ведётся по шестерне.

Напряжения изгиба определяются по формуле:

σF = (2×103× YF×K× K ·KFV×T)/(m2×Z×b)

[σ]F, (2,27)

где σF - рабочее напряжение изгиба, МПа;

K – коэффициент распределения нагрузки между зубьями, зависящими от окружной скорости колеса;

K - коэффициент концентрации нагрузки;

KFV -коэффициент динамичности нагрузки;

Коэффициент концентрации нагрузки K назначают в зависимости от коэффициента ширины:

(2,28)

Для определения коэффициента динамичности нагрузки KFV предварительно необходимо определить окружную скорость колеса:

V= (π×d×n)/(6×104), (2,28)

где V - скорость колеса, м/с;

d - делительный диаметр, мм;

n - частота вращения колеса, мин-1

По скорости назначаем степень точности колеса – 8 степень точности и коэффициент динамичности KFV = 1,04

σF1 =205,3МПа < [σ]F1 = 323,5МПа

Прочность зубьев на изгиб обеспечена.

2.3.12 Проверка зубьев колес на контактную прочность

(2,29)

где σH-контактные напряжения, МПа;

К - вспомогательный коэффициент, К =428 – для прямозубой передачи;

K- коэффициент распределения нагрузки между зубьями, К = 1;

K- коэффициент концентрации нагрузки, K= 1,08;

KHV- коэффициент динамичности нагрузки, KHV=1,03;

Ft- окружное усилие, Н;

d1- делительный диаметр шестерни, мм;

b2- ширина колеса, мм.

σH = 801,5 МПа < [σ]H = 953, 25 МПа

Прочность зубьев обеспечена.

3. Расчёт прямозубой конической передачи

3.1 Исходные данные

Крутящий момент на шестерне T1 = 14,84 Hм;

Крутящий момент на колесе T2 = 51,22 Hм;

Частота вращения шестерни n1 =695 мин-1;

Частота вращения колеса n2 = 195,77 мин-1;

Передаточное число u = 3,55;

Срок службы передачи L = 5лет;

Коэффициент суточного использования Kc = 0,29;

Коэффициент годового использования Kr = 0,8.

3.2 Выбор материала и термообработки

Шестерня: Сталь 40Х. Термообработка: улучшение и закалка ТВЧ. Твёрдость 45-50HRCэ.

Колесо: Сталь 40Х. Термообработка: улучшение и закалка ТВЧ. Твёрдость 45-50HRCэ.

3.3 Определение допускаемых напряжений

3.3.1Определение срока службы передачи

tΣ = 10161 часов – определено ранее.

3.3.2 Определение допускаемых напряжений на контактную прочность

, (3,1)

где

- базовое допускаемое напряжение, МПа;

ZN – коэффициент долговечности

Определяем базовые допускаемые напряжения:

(3,2)

ZR=1 (т.к. проводится шлифование закалённой шестерни);

ZV=1 (проектный расчёт);

SH=1,3 (поверхностное упрочнение).

(3.3)

m = 6;

NHE=60·n·tΣ

=

=60·n·tΣ (a1b13+a2b23+…+ aibi3) (3.4)

Шестерня Колесо
NHE1=60·695·10161·(13·0,15++0,53·0,85)=10,9·107NHE1> NHО1=>ZN1=1 NHE2=60·195,77·10161·(13·0,15++0,53·0,85)=3,06·107NHE2< N
775·1=775МПа
775·1,23=953,25 МПа

За расчётное принимаем

775МПа

3.3.3 Определение допускаемых напряжений при расчёте зубьев на изгиб

(3,5)

(3,6)

(3,7)

NFO=4·106; m=9