(3.8)
=550МПа, YR=1,YX=1,Yδ=1,SF=1,7
=550·1·1·1/1,7=323,5МПаNFE1>NFО=>YN1=1 | NFE2>NFО=>YN2=1 |
YA=1 – передача нереверсивная
3.3.4 Определение диаметра внешней делительной окружности колеса
de2= 1650·
(3,9)где de2 - диаметр внешней делительной окружности колеса, мм;
KH - коэффициент нагрузки, KH =1,5;
Т2 - крутящий момент на колесе, Н • м;
[σ]H - допускаемые напряжения на контактную прочность, МПа;
VH - коэффициент понижения контактной прочности конической передачи, VH =0,85.
de2 = 1650
Назначаем de2ст = 140 мм.
3.3.5 Определение числа зубьев шестерни
Определяем делительный диаметр шестерни:
(3.10)По делительному диаметру назначаем число зубьев шестерни Z1`=Z=17 т.к. Н1 и Н2 >45 HRCЭ.
3.3.6 Определение числа зубьев колеса
Z2 =Z1×u (3.11)
Z2 = 17·3,55=60
3.3.7 Определение торцевого модуля
mte = de2ст./Z2 (3.12)
mte = 140/60=2,33 мм
Стандартное значение торцевого модуля mte = 2,25мм (ГОСТ 9563-80)
3.3.8Уточнение диаметра делительной окружности колеса
de2 = mte ×Z2 (3,13)
de2 = 2,25·60=135 мм
Фактическое передаточное число: Uфак=60/17=3,53
3.3.9 Определение внешнего конусного расстояния
(3,14)где z 1и z2 - фактические числа зубьев шестерни и колеса.
Re = 0.5×2,25×
= 70,16мм3.3.10Определение ширины колес
b = kbe×Rbe, (3,15)
где kbe – коэффициент ширины, kbe = 0,285
b = 0,285·70,16=19,99
берём в=20 мм
3.3.11 Определение углов наклона образующих делительных конусов
δ2 = arctg Uфакт. (3,16)
δ1= 900- δ2 (3,17)
δ2 = arctg 3,53 = 74,20
δ1= 900-74,20 = 15,80
3.3.12 Определение диаметров колес
Делительные диаметры:
de1 = mte× z1 (3,18)
de2 = mte× z2 (3,19)
de1 =2,25·17=38,3мм
de2 = 2,25·60=135мм
Внешниедиаметры:
dae1 = de1+2(1+x1)×mte×cos δ1 (3,20)
dae2 = de2+2(1+x2)×mte×cos δ2, (3,21)
где х1 и х2 – коэффициенты радиального смещения, х1 и х2 = 0
dae1 =38,3+2·2,25×cos15,82=42,6мм
dae2 =135+2·2,25·cos74,2=136,23мм
3.3.13 Определение усилий в зацеплении
Окружные усилия на шестерне и колесе:
Ft1 = Ft2 = (2×T1)/de1(1-0.5kbe), (3,22)
где Ft1, Ft2 - окружные усилия, кН;
T1- крутящий момент на шестерне, Н • м;
de1- делительный диаметр шестерни, мм.
Ft1 = Ft2 = 2×14,84/38,25× (1-0,5×0,285) =0,9 кН
Осевое усилие на шестерне:
Fa1 = Ft×tgα× sinδ1 (3,23)
Fa1 = 0,9×tg200×sin15,820 = 0,09кН
Радиальное усилие на шестерне:
Fr1 = Fttgα cos δ1 (3,24)
Fr1 = 0,9×tg200×cos 15,820 = 0,32 кН
Осевое усилие на колесе:
Fa2 = Fr1 (3,25)
Fa2=0,32 кН
Радиальное усилие на колесе:
Fr2 = Fa1 (3,26)
Fr2= 0,09 кН
3.3.14 Проверка прочности зубьев на изгиб
Для этого определяются эквивалентные числа зубьев шестерни и колеса:
zv1 = z1/cos δ1 (3,27)
zv2 = z2/cos δ2 (3,28)
zv1 = 17/cos15,820 = 17,67 => YF1=4,31
zv2=60/cos74,180 = 220, 09=> YF2=3,74
Находим отношения:
[σ]F1 / YF1 и [σ]F2/ YF2 (3,29)
323,5/4,31=75,06<323.5/3,74=86,5
Проверочный расчёт ведём по шестерне:
σF = 2.7×103× YF×KFβ× KFV×T/b× de×mte×VF ≤ [σ]F, (3,30)
где VF- коэффициент понижения изгибной прочности конической передачи по сравнению с цилиндрической: VF = 0,85.
Коэффициент концентрации нагрузки при изгибе KFβ определяется в зависимости от коэффициента концентрации нагрузки по контактным напряжениям KFβ по формуле:
KFβ = 1+ (KHβ-1)×1.5, (3,31)
где KHβ=1,2
KFβ = 1+(1,2-1)×1,5 = 1,3
При определения коэффициента динамичности нагрузки КFV предварительно необходимо определить окружную скорость колеса V, м/с:
V = π× de2(1-0.5× kbe) ×n2/6×104 (3.32)
где n2 – частота вращения колеса, мин-1.
V =3.14·135·(1-0.5·0.285)·195,77/6·104 = 1,19 м/с
По скорости назначаем степень точности: 8. По степени точности назначаем коэффициенты: KFV = 1,04 и КHV = 1,03
σF = 2,7·103·4,31·1,3·1,04·14,84/20·38,25·2,25·0,85=177,32МПа
σF = 177,32<
=323,5 МПаПрочность зубьев на изгиб обеспечена.
3.3.15 Проверка зубьев колёс на контактную прочность
(3,33)
σH = 695,95 < [σ]H = 775 МПа
Контактная прочность зубьев обеспечена.
3.3.16 Проверка условия компоновки редуктора
(3,34) 100-136,23/2-50/2=6,9 мм - условие компоновки редуктора выполняется.4. Расчёт валов
4.1 Расчёт входного вала
4.1.1 Проверочный расчёт вала
Составляем расчётную схему, т.е. вал заменяем балкой на двух опорах.
К балке прикладываем все внешние силы, нагружающие вал, приводя плоскость их действия к двум взаимно перпендикулярным плоскостям (горизонтальной и вертикальной).
Ft1 = 0,9 кН; Fr1 = 0,32кН;
Fa1 = 0,09кН.
ΣМВ=0; Fr1·48- Fa1·d/2-RAY·26=0
RAY=
ΣМA=0; Fr1·22- Fa1·d/2+RBY·26=0
RBY=
ΣF=0; RBY+ RAY -Fr1=0
0,53-0,21+0,32=0
I-I
M1=Fa1·d1/2-Fr1·z1
M1=0,09×15=1,35Н·м
M1=-0,32×22+0,09×15=-5,69Н·м
II-II
M2=-Fp·z2+ Fa1×25+ RAY×(z2-22)
M2==-0,32×22+0,09×15=-5,69 кН;
M2=-0,32·48+0,09×15+0,53×26=0
ΣМА=0; RBX·26+Ft1·22=0
RBX=-Ft1·22/26=-0,9·22/26=-0,76 кН
ΣМВ=0; -RAX·26+Ft1·48=0
RAX=Ft1·48/26=0,9×48/26=1,66 кН
ΣF=0; Ra+Rb-Ft=1,66-0,76-0,9=0
I-I
М1=-Ft1·z1
M1=0; M1=-0,9·22=-19,8 Н·м
Выделяем опасные сечения.
1. Опора А
4.1.2 Упрощённый расчёт вала
(5.4)где σЭ – эквивалентное нагружение, МПа;
σ – номинальные напряжения изгиба, МПа;
τ – напряжения изгиба, МПа.
(5.5) (5.6)где σ-1 – предел выносливости материала при изгибе, МПа;
σ-1=0,43σв (5.7)
σ-1=0,43·600=258МПа
ε – коэффициент влияния абсолютных размеров поперечного сечения, ε=0,88;
S – коэффициент запаса сопротивления усталости, S=2;
Кδ – эффективный коэффициент концентрации нормальных напряжений,
Кδ = 1,65 – переход с галтелью.
σЭ = 8,99 <
=68,8МПаПрочность в сечении обеспечена.
4.2 Расчёт промежуточного вала
4.2.1 Материал и термообработка вала
Так как вал изготовляется заодно с шестерней, то материалом вала будет материал шестерни: Сталь 40Х
σв=600МПа
σТ=350МПа
4.2.2 Проектный расчёт вала
dк
(5.11)