Смекни!
smekni.com

Привод цепного конвейера (стр. 3 из 5)

(3.8)

=550МПа, YR=1,YX=1,Yδ=1,SF=1,7

=550·1·1·1/1,7=323,5МПа
NFE1>N=>YN1=1
NFE2>N=>YN2=1

YA=1 – передача нереверсивная

3.3.4 Определение диаметра внешней делительной окружности колеса

de2= 1650·

(3,9)

где de2 - диаметр внешней делительной окружности колеса, мм;

KH - коэффициент нагрузки, KH =1,5;

Т2 - крутящий момент на колесе, Н • м;

[σ]H - допускаемые напряжения на контактную прочность, МПа;

VH - коэффициент понижения контактной прочности конической передачи, VH =0,85.

de2 = 1650

Назначаем de2ст = 140 мм.

3.3.5 Определение числа зубьев шестерни

Определяем делительный диаметр шестерни:

(3.10)

По делительному диаметру назначаем число зубьев шестерни Z1`=Z=17 т.к. Н1 и Н2 >45 HRCЭ.

3.3.6 Определение числа зубьев колеса

Z2 =Z1×u (3.11)

Z2 = 17·3,55=60

3.3.7 Определение торцевого модуля

mte = de2ст./Z2 (3.12)

mte = 140/60=2,33 мм

Стандартное значение торцевого модуля mte = 2,25мм (ГОСТ 9563-80)

3.3.8Уточнение диаметра делительной окружности колеса

de2 = mte ×Z2 (3,13)

de2 = 2,25·60=135 мм

Фактическое передаточное число: Uфак=60/17=3,53

3.3.9 Определение внешнего конусного расстояния

(3,14)

где z 1и z2 - фактические числа зубьев шестерни и колеса.

Re = 0.5×2,25×

= 70,16мм

3.3.10Определение ширины колес

b = kbe×Rbe, (3,15)

где kbe – коэффициент ширины, kbe = 0,285

b = 0,285·70,16=19,99

берём в=20 мм

3.3.11 Определение углов наклона образующих делительных конусов

δ2 = arctg Uфакт. (3,16)

δ1= 900- δ2 (3,17)

δ2 = arctg 3,53 = 74,20

δ1= 900-74,20 = 15,80

3.3.12 Определение диаметров колес

Делительные диаметры:

de1 = mte× z1 (3,18)

de2 = mte× z2 (3,19)

de1 =2,25·17=38,3мм

de2 = 2,25·60=135мм

Внешниедиаметры:

dae1 = de1+2(1+x1)×mte×cos δ1 (3,20)

dae2 = de2+2(1+x2)×mte×cos δ2, (3,21)

где х1 и х2 – коэффициенты радиального смещения, х1 и х2 = 0

dae1 =38,3+2·2,25×cos15,82=42,6мм

dae2 =135+2·2,25·cos74,2=136,23мм

3.3.13 Определение усилий в зацеплении

Окружные усилия на шестерне и колесе:

Ft1 = Ft2 = (2×T1)/de1(1-0.5kbe), (3,22)

где Ft1, Ft2 - окружные усилия, кН;

T1- крутящий момент на шестерне, Н • м;

de1- делительный диаметр шестерни, мм.

Ft1 = Ft2 = 2×14,84/38,25× (1-0,5×0,285) =0,9 кН

Осевое усилие на шестерне:

Fa1 = Ft×tgα× sinδ1 (3,23)

Fa1 = 0,9×tg200×sin15,820 = 0,09кН

Радиальное усилие на шестерне:

Fr1 = Fttgα cos δ1 (3,24)

Fr1 = 0,9×tg200×cos 15,820 = 0,32 кН

Осевое усилие на колесе:

Fa2 = Fr1 (3,25)

Fa2=0,32 кН

Радиальное усилие на колесе:

Fr2 = Fa1 (3,26)

Fr2= 0,09 кН

3.3.14 Проверка прочности зубьев на изгиб

Для этого определяются эквивалентные числа зубьев шестерни и колеса:


zv1 = z1/cos δ1 (3,27)

zv2 = z2/cos δ2 (3,28)

zv1 = 17/cos15,820 = 17,67 => YF1=4,31

zv2=60/cos74,180 = 220, 09=> YF2=3,74

Находим отношения:

[σ]F1 / YF1 и [σ]F2/ YF2 (3,29)

323,5/4,31=75,06<323.5/3,74=86,5

Проверочный расчёт ведём по шестерне:

σF = 2.7×103× YF×K× KFV×T/b× de×mte×VF ≤ [σ]F, (3,30)

где VF- коэффициент понижения изгибной прочности конической передачи по сравнению с цилиндрической: VF = 0,85.

Коэффициент концентрации нагрузки при изгибе K определяется в зависимости от коэффициента концентрации нагрузки по контактным напряжениям K по формуле:

K = 1+ (K-1)×1.5, (3,31)

где K=1,2

K = 1+(1,2-1)×1,5 = 1,3

При определения коэффициента динамичности нагрузки КFV предварительно необходимо определить окружную скорость колеса V, м/с:

V = π× de2(1-0.5× kbe) ×n2/6×104 (3.32)


где n2 – частота вращения колеса, мин-1.

V =3.14·135·(1-0.5·0.285)·195,77/6·104 = 1,19 м/с

По скорости назначаем степень точности: 8. По степени точности назначаем коэффициенты: KFV = 1,04 и КHV = 1,03

σF = 2,7·103·4,31·1,3·1,04·14,84/20·38,25·2,25·0,85=177,32МПа

σF = 177,32<

=323,5 МПа

Прочность зубьев на изгиб обеспечена.

3.3.15 Проверка зубьев колёс на контактную прочность

(3,33)

σH = 695,95 < [σ]H = 775 МПа

Контактная прочность зубьев обеспечена.

3.3.16 Проверка условия компоновки редуктора

(3,34)

100-136,23/2-50/2=6,9 мм - условие компоновки редуктора выполняется.

4. Расчёт валов

4.1 Расчёт входного вала

4.1.1 Проверочный расчёт вала

Составляем расчётную схему, т.е. вал заменяем балкой на двух опорах.

К балке прикладываем все внешние силы, нагружающие вал, приводя плоскость их действия к двум взаимно перпендикулярным плоскостям (горизонтальной и вертикальной).

Ft1 = 0,9 кН; Fr1 = 0,32кН;

Fa1 = 0,09кН.

ΣМВ=0; Fr1·48- Fa1·d/2-RAY·26=0

RAY=

ΣМA=0; Fr1·22- Fa1·d/2+RBY·26=0

RBY=

ΣF=0; RBY+ RAY -Fr1=0

0,53-0,21+0,32=0

I-I

M1=Fa1·d1/2-Fr1·z1

M1=0,09×15=1,35Н·м

M1=-0,32×22+0,09×15=-5,69Н·м

II-II

M2=-Fp·z2+ Fa1×25+ RAY×(z2-22)

M2==-0,32×22+0,09×15=-5,69 кН;

M2=-0,32·48+0,09×15+0,53×26=0

ΣМА=0; RBX·26+Ft1·22=0

RBX=-Ft1·22/26=-0,9·22/26=-0,76 кН

ΣМВ=0; -RAX·26+Ft1·48=0

RAX=Ft1·48/26=0,9×48/26=1,66 кН

ΣF=0; Ra+Rb-Ft=1,66-0,76-0,9=0

I-I

М1=-Ft1·z1

M1=0; M1=-0,9·22=-19,8 Н·м

Выделяем опасные сечения.

1. Опора А

4.1.2 Упрощённый расчёт вала

(5.4)

где σЭ – эквивалентное нагружение, МПа;

σ – номинальные напряжения изгиба, МПа;

τ – напряжения изгиба, МПа.

(5.5)

(5.6)

где σ-1 – предел выносливости материала при изгибе, МПа;

σ-1=0,43σв (5.7)

σ-1=0,43·600=258МПа

ε – коэффициент влияния абсолютных размеров поперечного сечения, ε=0,88;

S – коэффициент запаса сопротивления усталости, S=2;

Кδ – эффективный коэффициент концентрации нормальных напряжений,

Кδ = 1,65 – переход с галтелью.

σЭ = 8,99 <

=68,8МПа

Прочность в сечении обеспечена.

4.2 Расчёт промежуточного вала

4.2.1 Материал и термообработка вала

Так как вал изготовляется заодно с шестерней, то материалом вала будет материал шестерни: Сталь 40Х

σв=600МПа

σТ=350МПа

4.2.2 Проектный расчёт вала

dк

(5.11)