Смекни!
smekni.com

Процесс водоподготовки (стр. 1 из 3)

1. Что понимают под пароводяным циклом котельных установок

Пароводяной цикл это период, времени за который вода превращается в пар и этот период повторяется много раз.

Для надежной и безопасной работы котла важное значение имеет циркуляция воды в нем – непрерывное движение ее в жидкостной смеси по некоторому замкнутому контуру. В результате этого обеспечивается интенсивный отвод тепла от поверхности нагрева и устраняются местные застои пара и газа, что предохраняет поверхность нагрева от недопустимого перегревания, коррозии и предотвращает аварию котла. Циркуляция в котлах может быть естественной и принудительной (искусственной), создаваемой с помощью насосов.

В современных конструкциях котлов поверхность нагрева выполняется из отдельных пучков труб, подсоединенных к барабанам и коллекторам, которые образуют достаточно сложную систему замкнутых циркуляционных контуров.

На рис. приведена схема так называемого циркуляционного контура. В сосуд наливается вода, причем левое колесо U – образной трубки подогревают, образуется пар; удельный вес смеси пара и воды будет меньше по сравнению с удельным весом в правом колене. Жидкость в подобных условиях не будет, находится в состоянии равновесия. Например, А – А давление слева будет меньше, чем справа – начинается движение, которое и носит название циркуляции. Пар выделится с зеркала испарения, удаляясь далее из сосуда, а на него место в таком же количестве по весу поступит питательная вода.

Для расчета циркуляции решают два уравнения. Первое – выражает материальный баланс, второе баланс сил.

Первое уравнение формулируется так:

Gпод =Gоп кг/сек, (170)

Где Gпод - количество воды и пара, движущихся в подъемной части контура, в кг/сек;

Gоп- количество воды, движущихся в опускной части, в кг/сек.

Уравнение баланса сил может быть выражено следующей зависимостью:

N = ∆ρ кг/м2, (171)

где N– полный движущий напор, равный h(γв - γсм), в кг;

∆ρ – сумма гидравлических сопротивлений в кг/м2, включая и силу инерции, возникающих при движении пароводяной эмульсии и воды по контору и вызывающих в итоге равномерное движение с определенной скоростью.

В циркуляционном контуре котла имеется большое количество параллельно работающих труб, причем условия их работы не могут быть в силу ряда причин совершенно идентичны. Чтобы обеспечить бесперебойную циркуляцию во всех трубах параллельно работающих контуров и не вызвать в каком-нибудь из них опрокидывания циркуляции, необходимо увеличить скорость движения воды по контуру, что обеспечивается определенной кратностью циркуляции К.

Обычно кратность циркуляции выбирается в пределах 10 – 50 и при малой тепловой нагрузки труб значительно больше 200 – 300.

Расход воды в контуре с учетом кратности циркуляции равняется

где D = расход пара (питательной воды) рассчитываемого контура в кг/час.

Скорость воды при входе в подъемную часть контура можно определить из равенства

м/сек,

2. Причины образования отложений в теплообменных аппаратах

Различные примеси, содержащиеся в нагреваемой и испаряемой воде, могут выделятся в твердую фазу на внутренних поверхностях парогенераторов, испарителей, паропреобразователей и конденсаторов паровых турбин в виде накипи, а внутри водяной массы – в виде взвешенного шлама. Нельзя, однако, провести четкую границу между накипью и шламом, так как вещества, отлагающиеся на поверхности нагрева в форме накипи, могут с течением времени превращаться в шлам и наоборот, шлам при некоторых условиях может прикипать к поверхности нагрева, образуя накипь.

Из элементов парогенератора загрязнению внутренних поверхностей больше всего подвержены обогреваемые экранные трубы. Образование отложений на внутренних поверхностях парообразующих труб влечет за собой ухудшение теплопередачи и как следствие опасный перегрев металла труб.

Радиационные поверхности нагрева современных парогенераторов интенсивно обогреваются топочным факелом. Плотность теплового потока в них достигает 600–700 квт/м2, а местные тепловые потоки могут быть еще выше. Поэтому даже кратковременное ухудшение коэффициента теплоотдачи от стенки к кипящей воде приводит к столь значительному росту температуры стенки трубы (500–600 °С и выше), что прочность металла может оказаться недостаточной, чтобы выдержать возникшие в нем напряжения. Следствием этого являются повреждения металла, характеризующиеся появлением отдулин, свинца, а нередко и разрывом труб.

При резких температурных колебаниях в стенках парообразующих труб, которые могут иметь место в процессе эксплуатации парогенератора, накипь отслаивается от стенок в виде хрупких и плотных чешуек, которые заносятся потоком циркулирующей воды в места с замедленной циркуляцией. Там происходит осаждение их в виде беспорядочного скопления кусочков различных величин и формы, сцементированных шламом в более или менее плотные образования. Если в парогенераторе барабанного типа имеются горизонтальные или слабонаклонные участки парообразующих труб с вялой циркуляцией, то в них обычно происходит скопление отложений рыхлого шлама. Сужение сечения для прохода воды или полная закупорка парообразующих труб приводят к нарушению циркуляции. В так называемой переходной зоне прямоточного парогенератора до критического давления, где испаряются последние остатки влаги, и осуществляется небольшой перегрев пара, образуется отложения соединений кальция, магния и продуктов коррозии.

Поскольку прямоточный парогенератор является эффективной ловушкой труднорастворимых соединений кальция, магния, железа и меди. То при повышенном содержании их в питательной воде они быстро накапливаются в трубной части, что значительно сокращает продолжительность рабочей кампании парогенератора.

Для того чтобы обеспечить минимальные отложения как в зонах максимальных тепловых нагрузок парообразующих труб, как и в проточной части турбин, необходимо строго поддерживать эксплуатационные нормы допустимого содержания в питательной воде тех или иных примесей. С этой целью добавочная питательная вода подвергается глубокой химической очистки либо дистилляции на водоподготовительных установках.

Улучшение качества конденсатов и питательной воды заметно ослабляет процесс образования эксплуатационных отложений на поверхности паросилового оборудования, но полностью его не устраняет. Следовательно, в целях обеспечения должной чистоты поверхности нагрева необходимо наряду с одноразовой предпусковой очисткой проводить также периодические эксплуатационные очистки основного и вспомогательного оборудования и при том не только при наличии систематических грубых нарушений установленного водного режима и при недостаточной эффективности проводимых на ТЭС противокоррозионных мероприятий, но и в условиях нормальной эксплуатации ТЭС. Проведение эксплуатационных очисток особенно необходимо на энергоблоках с прямоточными парогенераторами.

3. Опишите коррозию паровых котельных по пароводяному и газовому трактам

Металлы и сплавы, употребляемые для изготовления теплоэнергетического оборудования, обладают способностью вступать во взаимодействие с соприкасающейся с ними средой (вода, пар, газы), содержащей те или иные коррозионноагрессивные примеси (кислород, угольная и другие кислоты, щелочи и др.).

Существенным для нарушения нормальной работы парового котла является взаимодействие растворенных в воде веществ с обмыванием его металлом, в результате чего происходит разрушение металла, которое при известных размерах приводит к авариям и выходу из строя отдельных элементов котла. Такие разрушения металла окружающей средой называются коррозией. Коррозия всегда начинается с поверхности металла и постепенно распространяется в глубь.

В настоящее время различают две основные группы коррозионных явлений: химическая и электрохимическая коррозия.

К химической коррозии относятся разрушения металла в результате его непосредственного химического взаимодействия с окружающей средой. В теплосиловом хозяйстве примерами химической коррозии являются: окисление наружной поверхности нагрева горячими дымовыми газами, коррозия стали перегретым паром (так называемая пароводяная коррозия), разъедание металла смазочными материалами и др.

Электрохимическая коррозия, как показывает ее название, связана не только с химическими процессами, но и с передвижением электронов во взаимодействующих средах, т.е. с появлением электрического тока. Эти процессы происходят при взаимодействии металла с растворами электролитов, что и имеет место в паровом котле, в котором циркулирует котловая вода, представляющая собой раствор распавшихся на ионы солей и щелочей. Электрохимическая коррозия протекает также при контактировании металла с воздухом (при обычной температуре), содержащем всегда пары воды, которые конденсируясь на поверхности металла в виде тончайшей пленки влаги, создают условия для протекания электрохимической коррозии.

Разрушение металла начинается, по существу, с растворения железа, заключающегося в том, что атомы железа теряют часть своих электронов, оставляя их в металле, и превращаются, таким образом, в положительно заряженные ионы железа, переходящие в водный раствор. Этот процесс не происходит равномерно по всей поверхности омываемого водой металла. Дело в том, что химически чистые металлы обычно недостаточно прочны и поэтому в технике применяют преимущественно их сплавы с другими веществами, как известно, чугун и сталь являются сплавами железа с углеродом. Помимо этого, к конструкции стали добавляют в небольших количествах для улучшения ее качества кремний, марганец, хром, никель и др.