Смекни!
smekni.com

Разработка электропривода моталки для свертывания металлической полосы в рулоны (стр. 3 из 3)

При моделировании системы учтем нелинейности регуляторов, а также зависимость параметров механической части от радиуса барабана, который в свою очередь зависит от количества оборотов барабана.

Механическая часть имеет следующий вид:

Рисунок 6.3—Механическая часть электропривода

В первую очередь необходимо рассчитать текущий радиус барабана. Для этого находим угол поворота барабана. Зависимость между радиусом и количеством оборотов имеет следующий вид:

,

где 0,005—толщина наматываемой ленты (хотя в реальном механизме намотать 5-ти миллиметровую металлическую пластину не так просто).

—угол поворота барабана.

После определения радиуса находим момент инерции. Он складывается из двух частей—приведенного момента инерции механизма и момента инерции рулона. Момент инерции рулона определяется как момент инерции кольца.

Далее находим момент трения. С учетом того, что в конце намотки сила трения увеличивается вдвое, то эта зависимость имеет следующий вид:

Далее находим полезный момент. Он равен произведению силы натяжения на радиус барабана.

Сила натяжения в свою очередь зависит от удлинения возвратной пружины. Рабочий ход датчика натяжения принят равным 1 метру. Тогда при провисании больше двух метром натяжение равно нулю. При провисании равном нулю сила натяжения равна произведению упругости полосы на удлинение. Упругость полосы намного больше упругости возвратной пружины, поэтому в этом случае ударный момент (что не является его рабочим режимом).

При намотке необходимо сначала разогнаться до пониженной скорости. Для этого в системе введён сигнал «Вкл.». Моделирует сигнал от датчика поступления полосы на барабан. В начальный момент он отключает регулятор натяжения и подает на вход регулятора скорости сигнал для разгона на пониженную скорость.

Аналогично действуют сигнал «Стоп». Он предназначен для торможения барабана после намотки. Как было сказано выше, барабан не затормозится под действием только момента холостого хода. При этом на регулятор скорости подается нулевое задающее напряжение.

Моделирование системы произведено в пакете Matlab. Структурная схема и графики переходных процессов представлены в графической части проекта.


7. Проверка правильности расчета мощности и окончательный выбор двигателя

Для проверки правильности выбора двигателя воспользуемся методом эквивалентного тока. По данному методу измеряется среднеквадратичное значение тока за цикл. Этот ток не должен превышать номинальный ток двигателя. Также должна обеспечиваться загрузка привода более, чем на 75%.

<Iном

При частотно-токовом управлении ток пропорционален моменту. Поэтому на модели измеряем текущий момент, делим его на номинальный и умножаем на номинальный ток. Так получим текущий ток. Возводим его в квадрат и подаем на интегратор. В конце цикла работы интегратор покажет значение интеграла. Получены следующие значения:

Найдем загрузку двигателя:

Видно, что двигатель не догружен до требуемого значения. Однако, двигатель меньшей мощности (11 кВт) составляет 73% от используемого. Это значит, что двигатель будет перегружен, что приведет к выходу его из строя. Также двигатель меньшей мощности не обеспечит требуемых динамических показателей: при переходе с повышенной скорости на рабочую нужен большой момент. Если его не обеспечить, то система начнет «раскачиваться» и в ней появятся возрастающие колебания.

Поэтому, оставляется выбранный двигатель.


8 Разработка схемы электрической принципиальной

8.1 Разработка схемы силовых цепей, цепей управления и защиты

Силовая цепь состоит из следующих элементов: автоматический выключатель, преобразователь, двигатель.

Автоматический выключатель обеспечивает защиты от токов короткого замыкания. Тепловая защита встроена в преобразователь.

В качестве цепи управления используются два датчика.

Первый показывает, что полоса подходит к барабану. По его сигналу на вход регулятора скорости подается напряжение 2,8 В, что заставляет двигатель разогнаться до пониженной скорости 90 рад/с. Время срабатывания датчика—за 0,5 с до подхода полосы к барабану.

Второй датчик показывает, что произошел захват полосы барабаном. По его сигналу на вход регулятора скорости подается сигнал с регулятора натяжения. Происходит намотка полосы.

Когда полоса заканчивается, то по сигналу первого датчика происходит отключение регулятора скорости от регулятора натяжения, и на вход регулятора скорости подается сигнал напряжением 0 В. Это вызовет останов двигателя.

8.2 Выбор элементов схемы

Автоматический выключатель

Ток защиты автомата выбирается в 2 раза больше тока, потребляемого преобразователем. Быстродействие автомата: 1 мин при токе 150% от номинального тока.

Номинальный ток двигателя 29 А.

Выбираем автомат на 29 А и 380 В.

Выбираем выключатель автоматический АЕ3023 10054У2А. Номинальный ток 45 А.

Датчики

В качестве датчиков используем герконовые микропереключатели: МК-16-3. Максимальное коммутируемое напряжение 30 В, ток 0,01 А.

Датчик натяжения компенсационного типа

Выполнен на основе потенциометра. Рабочий ход—1 метр. Жесткость возвратной пружины 7200 Н*м. При рабочем натяжении занимает среднее положение.

Блок управления

На вход данного блока подаются сигналы от датчиков. В соответствии с описанным ранее алгоритмом он выдает сигналы на регулятор скорости. Логика работы такова:

Первый датчик 0 1 0 1
Второй датчик 0 0 1 1
Выходной сигнал 0 2,8 В Регулятор натяжения 0

Данный алгоритм реализуется на цифровых микросхемах.

Выбираем МС на полевых транзисторах:

- КР1561ЛИ2—четыре элемента 2И;

- К561ЛН2—шесть элементов НЕ.

Регулятор натяжения (ПИ-регулятор) собран на операционном усилителе.

- К154УД1. Входной ток <12 мА;

- выбираем входной резистор:

.

Берем 91 кОм.

- выбираем резистор в цепи обратной связи:

.

Берем 43 кОм;

- выбираем конденсатор:

С=

Берем 51 мкФ.


Заключение

В результате проведенной работы был разработан электропривод моталки на основе асинхронного двигателя с частотно-токовым управлением. Рассчитана трехконтурная система регулирования.

Загрузка двигателя происходит на 74%. Но при выборе двигателя меньшей мощности он будет перегружен и не сможет обеспечить требуемую динамику.


Приложение А

Исходные данные для модели:

ir=10; Передаточное число редуктора

Vrol=8.8; Линейная скорость рольганга

Cy=3600; Жесткость возвратной пружины

Rb=0.3; Радиус барабана для регулятора скорости

Rnach=0.3; Начальный радиус барабана

Jsum=0.52; Суммарный приведенный момент инерции механизма

Mxx=5.4; Начальный момент холостого хода

Pnom=15000; Мощность двигателя

Snom=0.027; Номинальное скольжение

w0nom=157; Номинальная частота сети

Mnom=Pnom/(w0nom*(1-Snom)); Номинальный момент

b=Mnom/(w0nom*Snom); Жесткость характеристики привода

mk=2.2; Кратность критического момента

mp=1.4; Кратность пускового момента

m1=mk/mp;

Sk=(sqrt(Snom)+sqrt((mk-1)/(m1-1)))/(1/sqrt(Snom)+sqrt((mk-1)/(m1-1))); критическоескольжение

Te=1/(w0nom*Sk); Электромагнитная постоянная времени

Tmu=Te; Малая постоянная времени

w0max=320; Максимальная частота вращения (повышенная скорость)

Fmax=2000; Максимальное натяжение

Kds=10/w0max; Датчик скорости

Kdn=10/Fmax; Датчик натяжения

Mmax=2.18*Mnom; Максимальный момент двигателя

Kf=w0max/10; Коэффициент передачи преобразователя по частоте

Krm=Mmax/(10*b*Kf); Коэффициент регулятора момента

Kpos=1/(Kf*Krm); Коэффициент ПОС по скорости

Km=b*Krm*Kf; Коэффициент передачи оптимизированного контура момента

Krs=4*Jsum/(Tmu*Km*Kds); Регулятор скорости

Krn=(Kds*ir)/(4*Te*Rb*Cy*Kdn); Регулятор натяжения

Trn=(32*Te*Te*Rb*Cy*Kdn)/(Kds*ir); Регулятор натяжения