Недостатки передачи обусловлены шумом, неравномерностью хода «вытягиванием» цепей (увеличением шага цепей вследствие износа шарниров) и, как следствие, необходимостью применения натяжных устройств.
ПЕРЕДАЧИ ВИНТ-ГАЙКА
Передача винт — гайка представляет собой кинематическую винтовую пару, которую используют в различных машинах и приборах для преобразования с большой плавностью и точностью хода вращательного движения в поступательное.
Механизмы часто применяют в качестве подъемных (домкраты и др.) и нагружающих устройств (прессы и др.), так как с их помощью можно сравнительно просто получать большие усилия (500...1000 кН) при малых перемещениях.
Простейший механизм содержит два звена: стойку - неподвижную гайку и подвижное звено — винт, обладающее винтовым движением. Механизм используют на практике для создания силы. В механизмах оба звена, составляющих винтовую пару, подвижны. В первом из них вращение гайки вызывает поступательное перемещение винта, а во втором — вращение винта приводит к поступательному перемещению гайки. Эти две схемы передач распространены на практике, так как передача вращательного движения на гайку или винт не вызывает технических трудностей.
Используют механизмы с резьбой различных профилей. В силовых механизмах большее распространение получила трапецеидальная резьба, в механизмах приборов — метрическая резьба, а в механизмах и устройствах прессов и прокатных станов - упорная резьба.
Достоинства механизмов: простота конструкций, плавность и точность хода, большое передаточное отношение, а также возможность самоторможения. Однако их КПД сравнительно низкий.
Ходовые винты изготовляют из высокоуглеродистых сталей 40, 45, 50, 40ХН, 50ХГ, 65Г и др. с закалкой до твердости более 50 НRС. Гайки изготовляют из оловянистых бронз Бр010Ф1, Бр06Ц6С3 и др. при высоких скоростях вращения (0,1...0,25 м/с), а при малых скоростях вращения используют антифрикционные чугуны марок АВЧ-1, АВЧ-2, АКЧ-1, АКЧ-2 или серые чугуны марок СЧ15, СЧ20.
ВЫВОД: Наиболее применима и удобна зубчатая передача с эвольвентным зацеплением.
На основании данного материала самой хорошей передачей является цилиндрическая с эвольвентным зацеплением.
3. Под кинематической схемой понимается изображение перечня элементов и изображение между ними
3.1 Определение общего придаточного отношения
Uр=nвх/nвых, где nвх–число оборотов входного вала,
nвых– число оборотов выходного вала
Подставляя исходные данные получим:
Uр=2052/38=54
3.2. Определение числа ступеней
Для обеспечения минимальной массы оптимальное число ступеней:
К=3lgUр
Подставляя данные получим:
К=3·lg 54 ≈ 5
Для определения ориентировочного передаточного отношения каждой ступени воспользуемся формулой:
Uк=
Uк=
≈ 2,2Для нормальной работы редуктора необходимо, чтобы передаточное отношение ступеней возрастало от входного вала к выходному. При этом числовое значение Uк должно лежать в пределах от 1/5 до 5.
Ориентируясь на полученную цифру для первой ступени выбираем:
U1=1,8, т.к.Uр = U1·U2·U3·U4·U5
U2,3,4,5 = Up/U1 = 54/1,8 = 30
U2 = 2 U3,4,5 = U2,3,4,5/U2 = 30/2 = 15
U3 = 2,2 U4,5 = U3,4,5/U3 = 15/2,2 =6,8
U4 = 2,4 U5 = U4,5/U4= 6,8/2,4 = 2,8
U1=1,8 U2 = 2 U3 = 2,2 U4 = 2,4 U5 = 2,8
3.3 Определение числа зубьев
Минимальное число зубьев на шестерни для эвольвентного зацепления лежит в пределах от 17 до 28, причем в точных передачах надо приближаться к верхнему правому пределу. Ориентируясь на ГОСТ 13733-77 выбираю для первой шестерни
Z1 = 24
Для обеспечения технологичности и экономичности редуктора рекомендуется все шестерни делать одинаково. Поэтому
Z1 = Z3= Z5 = Z7= Z9= 24
Определим число зубьев шестерни
Uк = Z2i/Z2i-1
U1 = Z2/Z1
Z2 = U1·Z1 = 1,8·24 ≈ 43
Z4 = U2·Z3 = 2·24 = 48
Z6 = U3·Z5 = 2,2·24 ≈ 53
Z8 = U4·Z7 = 2,4·25 ≈58
Z10 = U5·Z9 = 2,8·24 ≈ 67
Полученные результаты сведём в таблицу 1.
№ колеса | Расчетная Z | ГОСТ Z |
Z1 | 24 | 24 |
Z2 | 43 | 43 |
Z3 | 24 | 24 |
Z4 | 48 | 48 |
Z5 | 24 | 24 |
Z6 | 53 | 53 |
Z7 | 24 | 24 |
Z8 | 58 | 58 |
Z9 | 24 | 24 |
Z10 | 67 | 67 |
Определим общее передаточное отношение редуктора по ГОСТу
Uрг = Z2·Z4·Z6·Z8·Z10/ Z1·Z3·Z5·Z7·Z9
Определим погрешность придаточного отношения:
= (Uр-Uрг/Uр) · 100% 3%,т.е. число зубьев колёс выбрано правильно.
С учетом полученных данных строим кинематическую схему редуктора.
4. Расчет кинематики и геометрии
Основой для проведения расчетов является выбранный модуль и число зубьев колес.
4.1 Расчет кинематики редуктора
Расчет ведем по следующим формулам:
Uk= n2k-1/n2k= W2k-1/W2k
Wk= Tihk/30
Mk+1= Mk·Uk
M2= M1·U1= 25·10-4·1,8= 0,0045
M3= M2·U2= 0,0045·2= 0,009
M4= M3·U3= 0,009·2,2= 0,0198
M5= M4·U4= 0,0198·2,4= 0,04752
M6= M5·U5= 0,04752·2,8= 0,133056
n1=2052
n2= n1/U1= 2052/1,8= 1140
n3= n2/U2= 1140/2= 570
n4= n3/U3= 570/2,2= 259
n5= n4/U4= 259/2,4= 108
n6=n5/U5= 108/2,8= 38
Wk= Tihk/30≈0,1
W1= n1·Wk= 2052·0,1= 205,2
W2= n2·Wk= 1140·0,1= 114,0
W3= n3·Wk= 570·0,1= 57,0
W4= n4·Wk= 259·0,1= 25,9
W5= n5·Wk= 108·0,1= 10,8
W6= n6·Wk= 38·0,1= 3,8
Полученные данные занесем в таблицу 2
Nвал | nвх | Wвх | М |
1 | 2052 | 205,2 | 0,0025 |
2 | 1140 | 114,0 | 0,0045 |
3 | 570 | 57,0 | 0,009 |
4 | 259 | 25,9 | 0,0198 |
5 | 108 | 10,8 | 0,04752 |
6 | 38 | 3,8 | 0,133056 |
4.2 Геометрия
Воспользуемся следующими формулами:
d= mz – для делительной окружности
De= d+2m – диаметр выступа
Db= d-3m – диаметр впадины
a= m(z1+z2+…)/2 – межцентровое расстояние, z1– шестерня,
z2– колесо
b= (3…15)m – ширина венца
h= 2,5m – высота зуба
Предварительно выбираем значение модуля по Госту 9563–60
m= 0,3
Определим делительные окружности:
d1,3,5,7,9= mz1= 0,3·24= 7,2
d2= mz2= 0,3·43= 12,9
d4= mz4= 0,3·49= 14,7
d6= mz6= 0,3·54= 16,2
d8= mz8= 0,3·55= 16,5
d10= mz10= 0,3·68= 20,4
Определим диаметр выступа:
De1,3,5,7,9= d1,3,5,7,9+2m= 7,2+0,6= 7,8
De2= d2+2m= 12,9+0,6= 13,5
De4= d4+2m= 14,7+0,6= 15,3
De6= d6+2m= 16,2+0,6= 16,8
De8= d8+2m= 16,5+0,6= 17,1
De10= d10+2m= 20,4+0,6= 21
Определим диаметр впадины:
Db1,3,5,7,9= d1,3,5,7,9-3m= 7,2-0,9= 6,3
Db2= d2-3m= 12,9-0,9= 12,0
Db4= d4-3m= 14,7-0,9= 13,8
Db6= d6-3m= 16,2-0,9= 15,3
Db8= d8-3m= 16,5-0,9= 15,6
Db10= d10-3m= 20,4-0,9= 19,5
Определить межцентровое расстояние:
a1= m(z1+z2)/2= 0,3(24+43)/2= 10,05
a2= m(z1+z2)/2= 0,3(24+49)/2= 10,95
a3= m(z1+z2)/2= 0,3(24+54)/2= 11,7
a4= m(z1+z2)/2= 0,3(24+55)/2= 11,85
a5= m(z1+z2)/2= 0,3(24+68)/2= 13,8
Определим ширину венца:
b= (3…15)m= 10·0,3= 3
Определим высоту зуба:
h= 2,5m= 2,5·0,3= 0,75
5. Разработка конструкций редуктора
Разработка конструкции состоит в расчете и выборе его элементов: зубчатые колеса, валы, подшипники и корпуса.
ОБЩАЯ ХАРАКТЕРИСТИКА ВАЛОВ И ОСЕЙ
Назначение и классификация. Поддержания вращающихся деталей для передачи вращающего момента одной детали к другой (в осевом направлении) в конструкциях используют детали в форме тел вращения, называемые валами. В зависимости от вида испытываемой деформациусловно различают:
простые валы (валы) — работают в условиях кручения, изгиба и растяжения (сжатия), их применяют в передачах: зубчатых, ременных и др.;
торсионные валы (торсионы) — работают лишь в условиях кручения, т. е. передают только вращающий момент, соединяя обычно два вала на индивидуальных опорах;
оси — поддерживающие невращающиеся валы, работающие лишь в условиях изгиба и реже растяжения (сжатия.).
В зависимости от распределения нагрузок вдоль оси вала и условий сборки прямые валы выполняют гладкими или ступенчатыми, близкими по форме к балкам равного сопротивления изгибу. Гладкие валы более технологичны.
В специальных машинах (поршневых двигателях и компрессорах) используют коленчатые валы, имеющие «ломаную» ось.
Для передачи вращающего момента (вращения) между агрегатами со смещенными в пространстве осями входного и выходного валов применяют специальные гибкие валы, имеющие криволинейную геометрическую ось при работе. Такие валы обладают высокой жесткостью при кручении и малой жесткостью при изгибе.
В зависимости от расположения, быстроходности и назначения валы называю входными, промежуточными, выходными, тихо - или быстроходными, распределительными и т. п.
5.1 Выбор конструкции цилиндрических зубчатых колес
Конструкция определяется ГОСТом 13755-81
Для улучшения работоспособности тяжелонагруженных и высокоскоростных цилиндрических зубчатых передач- внешнего зацеплений рекомендуется применять исходный контур с модификацией профиля головки зуба, при этом линия модификации — прямая, коэффициент высоты модификации hg должен быть не более 0,45, а коэффициент глубины модификации
* — не более 0,02.