РЕДУКТОР ЗУБЧАТЫЙ ПРЯМОЗУБЫЙ
Оглавление
1 Задание на курсовой проект
2 ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ
3 КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПЕРЕДАЧИ
4 ПРОЕКТНЫЙ РАСЧЕТ РЕДУКТОРА
4.1 Структурная схема редуктора.
4.2 Расчет зубчатых колес редуктора
4.3 Проверочный расчет спроектированной передачи
4.4 Расчет диаметров валов редуктора.
4.5 Конструктивные размеры корпуса редуктора
4.6 Выбор подшипников и расчет их на долговечность.
4.7 Проверка прочности шлицевых и шпоночных соединений
4.8 Проверка опасных сечений быстроходного вала
4.9 Проверка опасных сечений тихоходного вала
5 Расчет муфты (определение диаметра срезаемого штифта)
6 Выбор сорта масла.
7 ДОПУСКИ И ПОСАДКИ
8 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
1-электродввигатель
2-упругая втулочно-пальцевая муфта
3-передача
4-комбинированая муфта
5-исполнительный механизм
Задание: для приведенной выше схемы выполнить проект передачи, входящей в него.
Исходные данные:
Номер схемы……………………………….….……...1
Вид колес………………….……………...прямозубый
Мощность на ведущем валу……………….….2,2 кВт
Частота вращения ведущего вала……..1425 об/мин
ведомого вала ………360 об/мин
Вид нагрузки………….………………….реверсивная
Смазка зацепления………………………….картерная
Срок службы …………………………...…24000 часов
Характер нагружения…..……вибрационная нагрузка
Учитывая исходные данные, по табл. П1 [1, стр. 390] выбираем двигатель асинхронной серии 4А ( по ГОСТ 19523-81) , мощности P = 2,2кВт , n1 = 1425 об/мин. Условные обозначения 90L4/95 .По табл. П2 [1, стр. 391] определяем диаметр выходного вала для выбранного электродвигателя dэ = 24 мм
Передаточное число привода находится по формуле
U12=n1/n2 =1425/360 = 4 (3.1)
n1 - частота вращения на ведущем валу, (об./мин.)
n2 - частота вращения на ведомом валу, (об./мин.)
n1 = 1425 об/мин
n2 =360 об/мин
Замечание: передаточное число до стандартного значения не доопределяется
Крутящий момент на валу находится по следующей формуле
Т=9,55Ч106ЧРh/n , (3.2)
где :
Р - мощность электродвигателя, (кВт)
h-КПД
n -частота вращения вaлa, (об/мин)
КПД привода принемаем за единицу h=1
Определяем крутящий момент на ведущем валу
T1 = 9,55Ч106Ч2,2/1425 = 14735,65 НЧмм
Рассчитываем крутящий момент на ведомом валу
T2 = T1ЧU12 =14735,65 Ч 4 = 58942,6 НЧмм
Принимаем согласно рекомендациям табл. 2,6 - 2,8 [З] марку материалов и их термообработку. Выписываем механические характеристики из табл. 2.8 [3].
Материал детали :
шестерня сталь 45
колесо сталь 45
Вид термообработки:
шестерня улучшение
колесо улучшение
Твердость:
шестерня HB 300
колесо HB 240
Базовое число циклов перемены напряжений при расчете на контактную выносливость:
шестерня NHO1=1,7Ч107
колесо NHO2=1,3Ч107
Базовое число циклов перемены напряжений при расчете на изгибную выносливость:
шестерня Nfo1=4Ч106
колесо Nfo2=4Ч106
Допускаемое контактное напряжение при базовом числе циклов:
шестерня sHO1=580 н/мм2
колесо sHO2=514 н/мм2
Допускаемое напряжение изгиба в зубьях при базовом числе циклов:
шестерня sfo1=294 н/мм2
колесо sfo2=256 н/мм2
По рекомендациям табл. 2,9 [3] для прямозубых передач определяем допускаемые напряжения:
а) Допускаемое контактное напряжение
[sH] = sHOЧКн (4.2.1)
sHO - допускаемое контактное напряжение при базовом числе циклов (см. п. 3.2)
Кн- коэффициент долговечности принимаем = 1
Nнo- базовое число циклов перемены напряжений при расчете на контактную выносливость
NHe-эквивалентное число циклов, определяется по формуле
Nнe = Nfe = 60ЧhЧn (4.2.2)
Подставим в формулы численные значения данных
Шестерня
Nнe1 = Nfе =60Ч24Ч103Ч1425 = 2052000000
(4.2.3)
КHL1 = 1
[sH1] = sHO1ЧКH1=580Чl = 580 н/ мм2
Колесо
NHE = NFE = 60Ч24Ч103Ч360 = 518400000
(4.2.4)КHL2 = 1
[sH2] = sHO2 Ч Кн2=514 Ч l = 514 н/ мм2
б) Допускаемое напряжение при изгибе
[sF] = sFOЧKF (3.3.4)
sFO - допускаемое напряжение изгиба в зубьях при базовом числе циклов (см. п. 3.2)
KF - коэффициент долговечности, принимается = 1
NFO - базовое число циклов перемены напряжений при расчете на изгибную выносливость
NFE - эквивалентное число циклов определено выше по формуле (4.2.2)
Подставим в формулы численные значения данных
Шестерня
NFE1 = NHE1 = 2052000000
(4.2.5)KFL1 = 1
[sF1] = sFO1ЧKFL1 = 294Ч1 = 294 н/мм2
Колесо
NFE2 = NHE2 = 518400000
(4.2.6)KFL2 = 1
[sF2] = sFO2ЧKFL2 = 256Ч1 = 256 н/мм2
Расчетное допускаемое контактное напряжение для передачи
[sH] = min([sH1],[sH2]) (4.2.7)
[sH1] -допускаемое контактное напряжение для шестерни (см. выше)
[sH2]-допускаемое контактное напряжение для колеса (см. выше)
Численный расчет допустимого контактного напряжения:
а) Межосевое расстояние
Ориентировочное значение межосевого расстояния аw , согласно рекомендациям табл. 2.9 [3] определяется следующей формулой
(4.2.8)КA - коэффициент, учитывающий механические свойства материалов колес (см. ниже)
U12 - передаточное число (см. п. 3)
Т1 - крутящий момент на ведущем валу (см, п. 3)
Кнв - коэффициент, учитывающий распределение нагрузки по ширине венца (см. ниже)
yBA -коэффициент относительной ширины колеса (см. ниже)
[sH] - расчетное допускаемое контактное напряжение для передачи (см. п. 4.2.2)
Замечание: в скобках знак "+" - соответствует колесам внешнего зацепления, "-'' колесам внутреннего зацепления, в данном задании рассматривается случай внешнего зацепления зубчатых колес, поэтому формуле (4.2.8) соответствует знак «+».
Зададимся недостающими коэффициентами:
Коэффициент относительной ширины колес yBA , определяем согласно рекомендациям табл. 2,24 [3] для прямозубых передач: yBA = 0,2-0,6 выбераем 0,4
Коэффициент yBD вычисляем по формуле
yBD = yBAЧ(1+U12)/2 (4.2.9)
yBD = 0,4Ч(1+4)/2 = 1
Коэффициент, учитывающий механические свойства материала колес
КA - определяем из таблицы 2.10 [3]
Вид колес цилиндрический прямозубый
Материал шестерни и колеса сталь 45
Коэффициенты Кa = 49,5 (н/мм2)
ZM = 274 (н/мм2)
КHB - определяем из таблицы 2.11 [3]
Твердость <350 НВ
Расположение шестерни - несимметрично относительно опор
КHb =1,07 – коэффициент учитывающий расположение нагрузки по ширине венца
KFb = 1,15
Произведем ориентировочный расчет межосевого расстояния
(4.2.10)Округляем значение Aw до ближайшего значения из ряда R 40 (см. табл. 2.5 [3]):
Aw = 100 мм
б) Значение модуля
Определяем значение модуля m = mn из соотношения
m = (0,01 - 0,03) Ч Aw (4.2.11)
Рассчитываем
m = 0,02Ч100 мм
Значения модуля лежат в диапазоне от 1,0 мм до 3,0 мм. Выбираемые в соответствии со стандартом, одно из значений таблицы 2.22 [З]
mn = 2,0 мм
в) Ширина венца колеса и шестерни
Определяем рабочую ширину венца колеса:
b2 = yBAЧAw (4.2.12)
Рассчитываем
b2 = yBAЧAw = 0,4Ч100 = 40 мм
Выбираем рабочую ширину венца колеса из ряд предпочтительных линейных размеров
b2 = 40 мм
Рабочая ширина шестерни определяется соотношением
b1 = b2 + (2 - 5) = 40+5 = 45 мм (4.2.13)
В соответствии со стандартами числовых значений таблицы 2.5 [З], выбираем из полученного диапазона следующее значение для рабочей ширины шестерни
b1 = 45 мм
г) Число зубьев шестерни и колеса
Aw = mnЧ(Z1+Z2) / (2Чcos(b)) (4.2.14)
ZS = Z1+Z2 = 2Aw . cosb / mn