Смекни!
smekni.com

Релаксационная стойкость напряжений в металлах и сплавах (стр. 15 из 17)

1 — после ВТМО; 2 — после закалки и отпуска при 200° С

Рисунок 19 - Кривые релаксации стали 35ГС при 20°С и различных начальных напряжениях.

При повышении температуры на процесс релаксации напряжений оказывают влияние такие явления, как рекристаллизация, возврат, старение. В этих условиях решающее значение приобретает временной фактор. По истечении некоторого промежутка времени, зависящего) от температуры, упрочняющее действие ТМО утрачивается и преимущество получает материал, не подвергавшийся ТМО.

Если требуется увеличить время эффективного воздействия ТМО на релаксационную стойкость данного материала, не следует стремиться к чрезмерно высокой плотности дислокаций в металле, так как такое структурное состояние, получаемое, например, путем НТМО, является при длительном температурном влиянии нестабильным. Лучшие результаты дает ВТМО, приводящая к несколько меньшей плотности дислокаций.

Для длительной высокотемпературной службы предпочтительна полигональная структура. Полигонизация может создаваться в определенных условиях и при ВТМО, и при НТМО, с применением относительно малых степеней пластической деформации. В случае НТМО для образования полигональной структуры необходим дополнительный нагрев в дорекристаллизационном интервале температур, называемой некоторыми авторами рекристаллизационным отжигом.

Стабильная полигональная структура получается с помощью механикотермической обработки (МТО), предложенной и разработанной И. А. Одингом и его школой. Этот вид обработки заключается в деформировании металла на 1—10% при определенной температуре и последующей выдержке в дорекристаллизационном интервале температур. Обе эти температуры Деформирования и тепловой выдержки — в некоторых случаях совпадают. Например, при обработке аустенитной стали 1Х18Н9 для обеих операций рекомендуется 600° С.

М.Л. Берншейн и Н.Б. Либман [14] изучали влияние ТМО (по схеме закалка — деформация — старение) на релаксацию напряжений элинварных сплавов марок Н41ХТА и Н35ХМВА при 550°С и начальных напряжениях

. При испытании образцов из сплава Н41ХТА после закалки с 1000° С, деформации на 8% и отпуска в течение 0,5 и 5 ч было установлено лишь незначительное повышение релаксационной стойкости по сравнению с недеформированными образцами (рисунок 20,а,б). Влияние температуры отпуска сказалось лишь в самый начальный момент процесса релаксации.

Иная картина наблюдалась для сплава, деформированного после закалки с 1000°С на 14%, когда при последующем отпуске образовалась полигональная структура. В связи с заметным повышением при указанной обработке предела упругости величина

в испытаниях на релаксацию была доведена до 930 МН/м2 (93 кг/мм2). Как видно из рисунка 20,в, релаксационная стойкость сплава также существенно повысилась, в особенности после отпуска при 800°С, которое создало в сплаве настолько устойчивую дислокационную структуру, что при 550°С релакса­ция напряжений при данной длительности испытаний вообще не наблюдалась.

а — закалка с 1050° С + отпуск; б — то же с 1003°С. + де­формация 8% + отпуск; в — то же + деформация 11% + отпуск при t, °С:

1 - 600; 2 - 700; 3 - 800

Рисунок 20 — Кривые релаксации сплава Н41ХТА при 550°С.

Аустенитные стали и сплавы на никелевой основе, как известно, обладают большой способностью к пластической деформации, поэтому влияние ТМО на их свойства наиболее заметно. Например, путем ВТМО можно повысить 100-ч длительную прочность аустенитных сталей при 550—650°С на 15—25%. Примерно такое же приращение

(на 20%) при 600° С дает МТО стали 1Х18Н9Т.

Эффективность ТМО жаропрочных аустенитных сталей и сплавов подтверждается многочисленными исследованиями. Однако в технической литературе почти отсутствуют сведения о влиянии ТМО и МТО аустенитных сталей и сплавов на их релаксационную стойкость. Имеются лишь отдельные данные о применении к ним холодной пластической деформации (наклепа), которая должна влиять на их сопротивляемость релаксации в том же направлении, как и различные варианты НТМО.

В частности, установлено, что холодное деформирование (с небольшими степенями обжатия) хромоникелевой аустенитной стали типа 18-9 и 18-10 марок Х18Н19, Х18Н9Т, Х18Н10, Х18Н10Т улучшает сопротивление релаксации при умеренно повышенных температурах (до 400°С).

На холоднодеформированной проволоке диаметром 3,8; 1, 9 и 1,5 мм из стали 1Х18Н9Т В.Я. Зубовым и Л.А. Красильниковым было изучено влияние более высоких обжатий (30, 60 и 90%). Отмечены заметное уменьшение сопротивления релаксации (в интервале от 150 до 450° С) с увеличением степени обжатия, а также положительная роль отпуска при температурах до 400° С. Следует отметить, что продолжительность испытаний на релаксацию в противоположность предыдущему исследованию здесь была невелика (15ч).

При более высоких температурах (600—850°С) отрицательное влияние предварительной пластической деформации отмечается уже при меньших степенях наклепа (15—30%). Влияние ТМО на релаксационную стойкость сплава ХН67ВМТЮ на никелевой основе исследовано М. Л. Бернштейном и Э. Л. Ситниковой. Эти авторы изучали влияние степени деформации и режи­мов старения на величину осадки (при сжатии) винтовых пружин диаметром 12,7 мм, изготовленных из волоченой проволоки указанного сплава с различными степенями обжатия. При 500° С и

= 600
800 МН/м2 наименьшая осадка (12% за 25 ч) наблюдалась после 50%-ного обжатия с последующим старением в течение 6 ч при 600—650° С, а при 600° С (20% за 25 ч)—после 25%-ного обжатия и старения 6 ч при 750° С

Практически же применение ТМО для жаропрочных сплавов в условиях релаксации связано с дальнейшим накоплением экспериментальных данных, которые позволят построить реальные графики.

4.2 Структурные превращения в процессе релаксации напряжений

Роль структурных превращений, происходящих в процессе релаксации напряжений при высоких температурах, удобнее всего рассмотреть на аустенитовых сталях и никельхромовых сплавах, поскольку в этих материалах, обычно относящихся к числу дисперсионно твердеющих, возможны различные варианты структурных превращений. Так, при длительном нагреве в определенном температурном интервале предварительно закаленной, а в большинстве случаев и отпущенной стали выделяются избыточные фазы из твердого раствора (карбидные либо интерметаллидные), а ранее выделившиеся метастабильные фазы переходят в более устойчивое структурное состояние. В некоторых аустенитных сталях, как уже отмечалось выше, под воздействием температуры возможен частичный распад твердого раствора, связанный с аллотропическим превращением

,
,
.

Эти превращения в аустенитных сталях могут происходить и в процессе ползучести или релаксации напряжений при Высоких температурах (несмотря на предварительный стабилизирующий отпуск).

Поскольку перечисленные явления сопровождаются изменением объема, это может отразиться на процессе релаксации, когда длина детали или образца должна оставаться постоянной. Особый интерес представляет влияние на релаксацию напряжений структурных превращений, связанных с уменьшением объема. В этом случае прирост напряжения за счет сокращения длины стержня (вследствие уменьшения объема) может превысить падение напряжения в процессе релаксации. В результате действующее напряжение с течением времени возрастает (отрицательная релаксация или аккумуляция напряжений).

Структурные превращения при повышенных температурах в цветных сплавах в некоторых случаях также приводят к отрицательной релаксации.

Однако далеко не во всех случаях отрицательный объемный эффект скажется подобным образом на первичных кривых напряжение — время. Необходимо также принимать во внимание относительную жаропрочность основной структуры твердого раствора и выделяющейся фазы, а также ее количество, форму и размеры выделившихся частиц. Например, мелкодисперсные карбиды, повышая сопротивление релаксации, будут действовать в том же направлении, что и уменьшение объема металла, а скоагулированные выделения, разупрочняющие сталь, — аналогично увеличению объема.

Далее, если принять, что фазы α и σ в условиях релаксации (так же, как и при ползучести) имеют меньшую жаропрочность, чем γ-твердый раствор, то при достаточно большом содержании этих фаз в структуре сплава падение напряжения в результате релаксации может превысить прирост напряжения, связанный с уменьшением объема.

Конкретным примером может служить серия хромоникельмарганцевых сталей, склонных к образованию σ-фазы в процессе длительного нагрева при 650°С, исследованных Я.С. Гинцбургом [10]. Превращение происходит с уменьшением объема. Тем не менее, первичные кривые релаксации этих сталей изгибаются не кверху, а книзу, что свидетельствует о резком релаксационном разупрочнении стали в результате образования в структуре значительных количеств σ-фазы. Подобные явления могут наблюдаться, когда во время релаксационного процесса при соответствующей температуре начинается интенсивное выпадение избыточных фаз, обладающих пониженной жаропрочностью.