Смекни!
smekni.com

Релаксационная стойкость напряжений в металлах и сплавах (стр. 16 из 17)

Рассмотренные случаи могут быть квалифицированы как аномальные. Практически применяемые для горячего крепежа аустенитные стали, как правило, имеют достаточно устойчивый твердый раствор и аллотропические превращения обычно отсутствуют. В условиях высокотемпературной релаксации структурные изменения в таких сталях ограничиваются выделением из твердого раствора вторичных фаз — карбидных или интерметаллидных. При невозможности полностью устранить внутренние превращения в сплавах в ряде случаев можно их использовать для повышения длительной релаксационной стойкости и жаропрочности.

Для примера приведем аустенитную жаропрочную сталь Х15Н25В4Т (ЭИ164). В процессе испытания на релаксацию при 680—700°С в структуре предварительно закаленной и отпущенной при 750° С стали непрерывно происходит дополнительное образование вторичных фаз (в основном Ni3Тi). Поскольку частицы этого интерметаллида при указанной температуре выделяются из твердого раствора в достаточно дисперсном виде, они тормозят процесс релаксации и первичные кривые (рисунок 21,а) отражают монотонный спад напряжения.


1 — 200(20); 2 — 250(25); 3 — 300(30)

Рисунок 21 — Первичные кривые релаксации стали Х15Н25В4Т при 700°С. 750° С и

, МН/м2.

При повышении температуры до 750°С структурные превращения стали Х15Н25В4Т при длительном нагреве имеют более сложный характер. Как было показано Ю.В. Латышевым, фаза

(с кубической решеткой) частично перерождается в фазу
(с гексагональной решеткой). После 5000 ч начинается процесс обратного растворения фазы Ni3Тi, количество ко­торой по истечении 10000 ч уменьшается почти до исходного. Одновременно в структуре непрерывно образуется интерметаллическое соединение Fe2W (типа фаз Лавеса), которое компенсирует «недостачу» в фазе Ni3Тi. Таким образом, суммарное содержание интерметаллидных фаз в стали за 5000—10000 ч не только не уменьшается, но даже незначительно возрастает (с 4,9 до 5,35%). Количество фазы Ni3Тi за то же время уменьшилось с ~4 до 2%, а количество фазы Fe2W, наоборот, возросло до 3,3%.

Описанные превращения способствуют сохранению сопротивления ползучести на достаточном уровне даже при столь высокой для стали этого класса температуре, как 750°С. Однако в условиях релаксации напряжений замена фазы Ni3Тi фазой Fe2W лишь несколько затормаживает разупрочнение стали при температуре 750°С. По истечении 1000 ч оставшееся напряжение составляет всего 35—40% от начального (рисунок 21, б). Можно полагать, что структурная нестабильность данной стали при 750°С является в условиях релаксации отрицательным фактором.

Интересные результаты дало уникальное по длительности испытание на релаксацию жаропрочного сплава Х15Н65ВМТЮ на никельхромовой ос­нове. Сплав был испытан на релаксацию при 750°С в течение 20000 ч при начальных напряжениях, составляющих 33, 40, 50 и 60% от среднего значения предела текучести сплава при той же температуре 600 МН/м2. Термическая обработка состояла из закалки с 1180°С на воздухе и отпуска в течение 16 ч при 800°С.

Специально проведенные исследования показали, что длительный нагрев ХН65ВМТЮ при 750°С, несмотря на предшествовавший стабилизирующий отпуск, вызыва­ет дополнительное выделение избыточной фазы типа Niз(Тi,Аl), сопровождающееся частичным перераспределением некоторых легирующих элементов между твердым раствором и избыточной фазой. Если в исходном состоянии количество последней составляет

10%, то за 5000 ч (при750°С) оно возрастает до 15,4%. В дальнейшем интенсивность выделения фазы Niз(Тi,Аl) заметно ослабевает; 77% дополнительно выделившегося количества этой фазы приходится на первые 5000 ч старения при 750°С и лишь 23% — на последующие 15000 ч. Непрерывное затухание процесса релаксации напряжений исследованного сплава связано с постепенной стабилизацией структуры и, в частности, с прекращением обеднения твердого раствора никелем и алюминием. По-видимому, стабилизация структуры сплавов с сильно легированным твердым раствором оказывает положительное влияние на длительную релаксационную стойкость. О том, что упрочнение твердого раствора в ряде случаев более эффективно, чем создание в структуре чрезмерного количества частиц избыточной фазы, говорят результаты сравнительного испытания на релаксацию при 800°С двух никельхромовых сплавов, из которых одни имел сильно легированный твердый раствор и умеренное количество вторичной (упрочняющей) фазы, а второй — менее легированный твердый раствор, но значительно большее количество той же упрочняющей фазы. В течение первых сотен часов оба сплава имели практически одинаковую релаксацион­ную стойкость, но по истечении 1000 ч уровень оставшихся напряжений у второго сплава был ниже.

На основании изложенного можно заключить, что структурные превращения, происходящие в сплавах при температурном режиме релаксации напряжений, оказывают определенное влияние на ход процесса релаксации. Эффект дисперсионного твердения или аллотропических превращений накладывается на чисто релаксационные явления, поэтому общая картина процесса заметно усложняется.

В связи с этим естественно возникает «обратный» вопрос: может ли процесс высокотемпературной релаксации напряжений (не приводящий к разрушению) оказывать в свою очередь определенное влияние на структуру испытуемой стали (или сплава).

Аустенитные стали марок 1Х18Н9Т, 1Х14Н18В2БР и Х20Н25ВМЗМ, а также сплав ХН77ТЮ были испытаны на релаксацию напряжений при температуре 650°С, примерно отвечающей температуре 0,5

Выбранные начальные напряжения во всех случаях были ниже предела текучести, составляя
= (0,4
0,8)
.

Образцы, испытанные на релаксацию напряжений в течение 2000 ч, подвергали микроскопическому, электронномикроскопическому, фазовому, химическому и рентгеноструктурному анализам. Параллельно исследовали образцы в исходном состоянии, а также после нагрева той же длительности и температуре (при

= 0), что позволило отделить влияние температуры испытания от влияния самого процесса релаксации.

Так как различные исходные микроструктуры аустенитной стали могут обладать неодинаковой восприимчивостью к возможному влиянию процесса релаксации напряжений, кольцевые образцы перед испытаниями были подвергнуты шести вариантам термической обработки, что позволило исследовать каждую сталь в шести структурных состояниях. Последние отличались величиной зерна твердого раствора, количеством избыточной фазы и степенью ее дисперсности.


Заключение

Положительное влияние на релаксационную стойкость сплавов оказывают все факторы, повышающие сопротивление разупрочнению, уменьшающие скорость возврата и способствующие торможению диффузионных процессов, а также создающие стабильные препятствия движению дислокаций.

Таким образом, любое нарушение структурной однородности твердого раствора способствует развитию процессов релаксации. Это объясняется термодинамической неустойчивостью сплава, в котором образовались локальные участки структуры, несвойственной данным внешним (температура, давление) и внутренним (химсостав) условиям.

Можно ожидать понижения релаксационной стойкости сплава и в том случае, если в основном твердом растворе имеются концентрационные неоднородности. Последние могут возникать, например, при недостаточной выдержке стали во время термической обработки. В никельхромовых и некоторых других сплавах концентрационная неоднородность наблюдается в связи с возникновением, так называемого K-состояния.

Большое влияние на релаксационную стойкость металлов и сплавов (как и вообще на жаропрочность) оказывает величина зерна основного твердого раствора.

Для повышения релаксационной стойкости сплавов при относительно высоких температурах, в особенности при ограниченном сроке их службы, целесо­образно увеличение размера зерна основной структуры; в связи с этим все виды термической обработки, приводящие к укрупнению зерна, являются предпочтительными. Однако наиболее крупное зерно почти неизбежно приводит к значительному уменьшению длительной пластичности и в ряде случаев способствует чувствительности к концентраторам напряжений. Поэтому, например, чрезмерно крупное зерно в металле крепежных деталей недопустимо.


Список использованной литературы

1. Борздыка, А.М. Релаксация напряжений в металле и сплавах / А.М. Борздыка, Л.Б. Гецов. – М.: Металлургия, 1972. – 304 с.

2. Губкин, С. И. Теория течения металлического вещества / С.И. Губкин.– М.: ОНТИ, 1935. – 234с.

3. Ровинский, Б.М. Влияние термомеханической обработки на релаксационную стойкость сталей и сплавов / Б.М. Ровинский // Известия ОТН АН СССР. – 1954. – №2. – С. 67.

4. Коттрелл, А. X. Дислокации и пластическое течение в кристаллах / А. Х. Коттрелл. – М.: Металлургиздат, 1958. – 390с.

5. Одинг, И. А. Исследования жаропрочных сталей и сплавов / И.А. Одинг, Ф. И. Алешкин // Наука. – 1964. – № 9 – С. 63.

6. Ровинский, Б.М. Релаксация напряжений / Б.М. Ровинский, В.Г. Лютцау // Известия ОТН АН СССР. – 1956. – № 11. – С. 96.