Смекни!
smekni.com

Водяной насос (стр. 4 из 5)

Отсоединим группу Асура (2; 3). Приложим все известные внешние силы, главный вектор сил инерции Fи2 и главный момент сил инерции Ми2, а вместо отброшенных звеньев 1 и стойки 0 приложим реакции F21и F30, причем неизвестного по величине F21 представим как сумму:

, а реакцию F30 направим перпендикулярно направляющей ползуна.

Определим реакцию

из условия
для звена 2

Для определения составляющей

и реакции F30 запишем на основании принципа Даламбера векторное уравнение статики для групп Ассура (2; 3)

Выбираем масштабный коэффициент

Н/мм

Определим чертежные отрезки, изображающие силы на чертеже:

Строим план сил группы Асура (2; 3)

Из плана определяем:

Переходим к силовому расчету механизма 1 класса. В точку В приложим реакцию

. К звену 1 прикладываем главный момент сил инерции
и движущий момент. Рассмотрим равновесие звена 1 относительно точки А.

Из плана сил определяем:

.

2.5 Оценка точности расчетов

Находим относительную погрешность:

594,6 + 1258,8 – 33600·58,05·0,00095 = 1853,4 – 1852,9 = 0,5 ≈ 0.

3. Синтез зубчатого механизма

Исходные данные:

Параметры планетарного редуктора:

U1H = 5,5; k = 4; m1 = 7 мм.

Параметры открытой зубчатой передачи:

Z4 = 15; Z5 = 28; m = 12 мм.

Параметры исходного контура по ГОСТ 16532–70:

a = 20 град; ha* = 1; c* = 0,25.

3.1 Подбор чисел зубьев

Подбор чисел зубьев и числа сателлитов производим с учетом условия соосности:

воспользуемся формулой Виллиса с учетом

;

;

Подбор зубьев производим путем подбора с учетом ряда ограничений:

Для колес с внешними зубьями: Z1 ≥ Zmin= 17

Для колес с внутренними зубьями: Z3 ≥ Zmin = 85 при ha* = 1

Принимаем Z1 = 24, Z3 = (U1H– 1)*Z1 = 4.5 * 24 = 108

Число зубьев Z2 определяем из условия соседства:

Z1 + Z2 = Z3 – Z2

- условие целостности выполняется.

Сборка нескольких сателлитов должна выполняться без натягов при равных окружных шагах между ними. Оно выражается следующим соотношением:

, где Ц = 1, 2, 3, … – целое число; p = 0

- условие целостности выполняется

;

- выполняется.

Окончательно принимаем Z1 = 24; Z2 = 42; Z3 = 108.

Определяем диаметры колес планетарного редуктора. Редуктор собирается из колес без смещения.

мм

мм

мм

Вычерчиваем схему редуктора в масштабе 1: 3

3.2 Проектирование цилиндрической эвольвенты зубчатой передачи внешнего зацепления

Исходные данные:

Z1 =13, Z2 =28 – числа зубьев колёс;

m = 8 мм – модуль зацепления;

h*a = 1 – коэффициент высоты головки зуба;

с* = 0,25 – коэффициент радиального зазора.

3.2.1Выбор коэффициентов смещения x1 и x2 исходного контура

Коэффициенты смещения

и
должны соответствовать условию: (При отсутствии подрезания зубьев.)

x1 ³xmin1; x2 ³xmin2

xmin1 и xmin2 определяем по формуле:

;

Наименьший коэффициент смещения по критерию отсутствия подрезания зуба при заданных числах зубьев:

;

;

Выбираем коэффициенты смещения

и
из таблицы коэффициента смещения для силовых передач при свободном выборе межосевого расстояния (Z1 = 10…30, Z2 ≤ 30): x1=0.3; x2=0; xå=x1+x2=0,3.

3.2.2 Угол зацепления

;

aw=22.06160=2204’

3.2.3 Делительные диаметры d1 иd2

d1 = m*z1 = 8*13 = 104 мм

d2 = m*z2 = 18*28 = 224 мм

3.2.8 Радиусы основных окружностей

;

.

3.2.4 Делительное межосевое расстояние передачи

3.2.5 Межосевое расстояние передачи

3.2.6 Коэффициент воспринимаемого смещения

3.2.7 Коэффициент уравнительного смещения

3.2.8 Радиусы начальных окружностей

Проверка вычислений:

aw = rw1 + rw2 = 52.72 + 113.56 = 166.28 (мм)

Радиусы вершин зубьев

3.2.9 Радиусы впадин

Высота зубьев колес

h = ra1 – rf1 = ra2 – rf2 = 56,68 – 44,4 = 114,28 – 102 = 12,28 (мм)

Основной делительный шаг зубьев

мм

Относительные толщины зубьев на вершинах в пределах нормы.

Вычерчиваем по полученным данным эвольвенту зубчатого зацепления в масштабе М 2,5: 1.

4. Синтез кулачкового механизма

4.1 Основные положения и определения

Кулачковым механизмом называется трехзвенный механизм, составленный из стойки и двух подвижных звеньев (кулачка и толкателя), связанных между собой посредством высшей кинематической пары. Механизм служит для воспроизведения заданного периодического закона движения ведомого звена. Ведущим звеном в кулачковом механизме является, как правило, кулачок, ведомым звеном толкатель.