Смекни!
smekni.com

Способы очистки газообразных выделений при электролизе алюминия (стр. 1 из 5)

Дисциплина: Металлургия легких металлов

КУРСОВАЯ РАБОТА

Способы очистки газообразных выделений при электролизе алюминия

Введение

Впервые металлический алюминий выделил в 1825 году датский физик Ганс Кристиан Эрстед, а в 1854 году француз Анри Сент- Клер Девиль, используя работы Эрстеда и Фридрха Велера, начал его коммерческое производство химическим способом. Всего мировое производство алюминия химическим способом за период с 1854 г. по 1890 г. составило около 200 т. Производство алюминия таким способом не могло обеспечить мировую промышленность дешевым и достаточно чистым металлом. Положение коренным образом изменилось после организации промышленного производства электроэнергии и передачи ее на дальние расстояния. История многотоннажного производства чистого алюминия начинается с 1886 г., когда Поль Эру (Франция) и Чарльз Холл (США) почти одновременно предложили получение алюминия путем электролиза глинозема в расплавленном криолите. Производство алюминия электролиза криолитоглиноземного расплава впервые было организовано Ч. Холлом в г. Кенсингтоне близ Питсбурга (США) в ноябре 1888 г. В этом же году во Франции было основано Металлургическое общество, которое приобрело патент П.Эру. Вскоре начал работать небольшой завод Фрож в департаменте Изер, а в 1893 г. под руководством П.Эру пущен большой завод в Ла Пра в Савойях.

В России до революции не было собственно алюминиевой промышленности, но теоретические исследования в области электролиза проводились

П.П. Федотьевым – профессором Петербургского политехнического института. В августе 1929 г. состоялось решения Правительства СССР о строительстве первых алюминиевых заводов.

До начала 40-х годов делались лишь ограниченные попытки, направленные на улавливание и регенерацию выбросов из алюминиевых электролизеров. В то время мощность отдельных заводов была небольшой, и поэтому общее количество вредных веществ, которые могли быть выброшены было низким по сравнению с современными природоохранными стандартами. Следовательно, ущерб окружающей среде при электролизе алюминия наблюдался редко. Однако в 40–х годах началось строительство крупных по тому времени заводов по производству алюминия. 14 мая 1932 г. выдал первый алюминий Волховский алю­миниевый завод (ВАЗ) — первенец алюминиевой промышлен­ности России, и эта дата является днем рождения отечествен­ной алюминиевой промышленности. В 1933 г. пущен Днепровский (г. Запорожье, Украина) алюминиевый завод (ДАЗ), использующий электроэнергию Днепрогэса. В 1939 г. начато строительство Уральского — УАЗ (г. Каменск-Уральский, Свердловская обл.) алюминиевого за­вода. Во время Великой Отечественной войны Волховский и Днепровский алюминиевые заводы оказались на оккупирован­ной территории, и правительством были приняты меры по форсированному строительству алюминиевых заводов в Куз­бассе и на Урале. Новокузнецкий алюминиевый завод (НкАЗ) ввели в эксплуатацию в 1943 г., а Богословский — БАЗ (г. Краснотурьинск, Свердловская обл.) выдал первый металл в День Победы — 9 мая 1945 г.В послевоенные годы были построены алюминиевые заво­ды в г. Кандалакша — КАЗ (Мурманская обл.), Канакере — КанАЗ (Армения), Надвойцы — НАЗ (Карелия), Сумгаите — САЗ (Азербайджан), Волгограде — ВгАЗ, Шелехове — ИркАЗ (Иркутская обл.), Красноярске — КрАЗ, Братске — БрАЗ, Турсун-Заде — ТадАЗ (Таджикистан) и Саяногорске — СаАЗ. Основные сведения об этих заводах приведены в таблице 1.

Таблица 1

Характеристика алюминиевых заводов России и СНГ на 01.01.1998 г.

Завод

Год пуска

Тип электро­лизера

Сила тока, кА

Производи­тельность, тыс. т/год

Выпуск в 1997 г., тыс. т

Волховский

1932

ОА

50

20,1

10,6

Уральский

1939

БТ, ОА

70, 160

77,1

77,4

Богословский

1945

БТ

60-90

152,7

146,8

Новокузнецкий

1943

БТ, ВТ

82—88,

130, 155

267,9

262,7

Кандалакшский

1951

БТ

75-79

67,4

66,2

Надвоицкий

1954

БТ, ОА

68

71,8

58,0

Волгоградский

1959

ВТ

130, 155

141,1

119,8

Красноярский

1964

ВТ, ОА

155. 100

749,1

781,9

Братский

1966

ВТ

155

814,0

790,8

Саянский 1985

ОА

175, 255

325,3

325,9

Итого по России...

2937,5

2895,3

Запорожский

1933

БТ

63-65

108

98,5

Канакерский

1950

БТ

64

______

_______

Таджикский.

1975

ОА

165, 255

300

183,9

Сумгаитскии

1955

БТ

60-72

58

______

Итого по СНГ

(без России)

466

282,4

Всего по СНГ...

3403,5

3177,7

Из таблицы характеристики алюминиевых заводов России и СНГ видно, массовое строительство алюминиевых заводов началось в 40-е годы, что дало началу и массовому воздействию вредных веществ выделяющихся при электролизе алюминия на окружающую среду. Это привело к росту знаний, связанных с воздействием газообразных фторидов, которые сейчас считаются гораздо более токсичными, нежели твердые фториды, а также повлияло на конструкцию и расположение алюминиевых заводов, поскольку полная защита от газовых выбросов трудна, и скорее всего даже невозможна. Заводы безоговорочно приняли ответственность за соблюдение природоохранных стандартов, но в качестве дополнительной меры безопасности они часто строятся в таких местах, где преобладающие атмосферные условия могут быть расположены к выносу случайных выбросов в те области, где они не могут причинить вред.

Технологические операции, такие как замена анода, установка анода, выливка металла и загрузка глинозема делают невозможным работу полностью закрытого электролизера. Поэтому система газосбора может эффективно работать только в том случае, если электролизер имеет укрытие, обеспечивающее возможность частичного открывания для проведения отдельных операций.

Ранние попытки улавливания выбросов менялись от фонарной мокрой газоочистки, поглощающей газы, выделяющиеся из укрытых электролизеров, до газоходной системы. Электролизеры с самообжигающимися анодами имеют дополнительные проблемы связанные с выделением смолистых веществ, и эти летучие углеводороды желательно дожигать, чтобы они не оказывали влияния на сам процесс газоочистки.

Изменения, связанные с улавливанием и контролем за выбросами продолжались в 50-е и ранние 60-е годы, когда в качестве промышленного стандарта начали постепенно внедряться полностью укрытые электролизеры. Это привело к повышению комфорта обслуживающего персонала, а также улучшению здоровья людей, чувствительных к этим выбросам.

Эффективное улавливание фтористых выбросов принесло дополнительное экономическое преимущество, связанное со снижением разрушения корпусов вследствие коррозии, и это стало другим экономическим стимулом в направлении обеспечения общего контроля за выбросами.

С уменьшением использования природного криолита потери фторидных составляющих из электролизера приобрели новое значение. Улучшение технологии должно было привести к более полному использованию фторидного полупродукта, снижая таким образом расход существующего источника.

Состав отходящего газа зависит от качества углерода и типа используемых анодов, поскольку электролизеры с обожженными анодами всегда содержат меньше фтороуглеродов. Даже в газах на выходе из горелок электролизеров Содерберга содержание смолистых составляет 1-3 кг/тонну произведенного алюминия. Улавливание этих смолистых веществ представляет собой основное отличие процесса газоочистки электролизеров с самообжигающимися анодами. Фториды в выбросах (часто называемых “фтор”) присутствуют как в виде газов, так и в твердой форме. Общий расход фторидов в электролизере однако включает потери через футеровку, и колеблется в пределах 15-50 кг/т произведенного алюминия, в зависимости от способа представления. Приблизительно половина этого количества уходит из электролизера с анодными газами. Скорость потерь зависит от типа электролизера (она обычно выше на электролизерах Содерберга), состава электролита, рабочей температуры и плотности тока. Поскольку в анодах содержится сера, ее оксиды также уносятся анодными газами, и их количество эквивалентно 3-15 кг серы на тонну произведенного алюминия.