Схема нагружения быстроходного вала
Рис. 8.1 Расчетная схема быстроходного вала.
Горизонтальная плоскость. Сумма моментов сил и реакций опор относительно опоры А
åmA = 100Ft – 200BX= 0
тсюда находим реакции опор А и В в плоскости XOZ
AX=BX = 464·100/200 = 232 H
Изгибающие моменты в плоскости XOZ
MX1 = 232·100= 23,2 Н·м
Вертикальная плоскость. Сумма моментов сил и реакций опор относительно опоры А
åmA = 100Fr – 200BY – Fa1d1/2 - 60Fоп= 0
Отсюда находим реакцию опор A и В в плоскости YOZ
BY = (672∙100 – 1845·50/2 – 279·60)/200 = 22 H
AY = Fr – BY + Fоп= 672 – 22 + 279 = 929 H
Изгибающие моменты в плоскости YOZ
MY = 279·60 = 16,7 Н·м
MY = 279·160 – 929·100 = -48,3 Н·м
MY = -22·100 =-2,2 Н·м
Суммарные реакции опор:
А = (АХ2 + АY2)0,5= (2322 + 9292)0,5 = 958 H
B= (BХ2 + BY2)0,5= (2322 + 222)0,5 = 233 H
Схема нагружения тихоходного вала
Рис. 8.2 Расчетная схема тихоходного вала.
Горизонтальная плоскость:
SmA = Fм105 – 100Dx+ Ft2 50 = 0;
Dх = (3396×105 + 1845×50)/100 = 4488 Н;
Cх = Dx – Ft2 + Fм = 4488 – 1845 + 3396 = 6039 Н;
Изгибающие моменты:
Мх1 = 4488×50 = 224,4 Н×м;
Мх2 = 3396×105 = 356,6 Н×м.
Вертикальная плоскость:
SmA = Fr2 50 – Dy100 + Fa2d2/2 = 0
Dy= (464×200/2 + 672·50)/100 = 800 Н
Cy= Dy – Fr2 = 800 – 672 = 128 Н
Мy1 = 800×50 = 40,0 Н×м;
Мy2 = 128×50 = 6,4 Н×м;
Суммарные реакции опор:
C = (Cx2 +Cy2)0,5 = (60392+ 1282)0,5 = 6040 H,
D = (44882+ 8002)0,5 = 4559 H,
9. Проверочный расчет подшипников
Быстроходный вал
Эквивалентная нагрузка фиксирующей опоры В.
P = (XVFRB + YFa)КбКТ,
где Х – коэффициент радиальной нагрузки
Y – коэффициент осевой нагрузки
V = 1 – вращается внутреннее кольцо подшипника [1c. 212]
Кб = 1,4 – коэффициент безопасности [1c. 214]
КТ = 1 – работа при t < 100oC [1c. 214]
отношение Fa/В = 1845/233 = 7,9 > e : следовательно Х = 1,0; Y = 1,66
Р = (1,0·1·233+1,66×1845)1,4·1 = 4614 Н
Требуемая грузоподъемность подшипника
Динамическая грузоподъемность сдвоенного роликоподшипника в 1,7 раза больше грузоподъемности одинарного подшипника, тогда
Стр = Р(573wL/106)0,3 =
= 4614(573×60,7×28000/106)0,3 = 36,4 кH < C= 29,6·1,7 = 50,3 кН
Условие Стр < C выполняется.
Расчетная долговечность подшипников
= 106(50,3×103 /4614)3,333/60×580 = 82485 часов,больше ресурса работы привода, равного 28000 часов.
Эквивалентная нагрузка плавающей опоры А
P = (XVFRА)КбКТ,
где Х = 1 – коэффициент радиальной нагрузки
Р = (1,0·1·958)1,4·1 = 1341 Н
Требуемая грузоподъемность подшипника
Стр = Р(573wL/106)0,333 =
= 1341(573×60,7×28000/106)0,333 = 13,3 кH < C= 22,5 кН
Условие Стр < C выполняется.
Расчетная долговечность подшипников
больше ресурса работы привода, равного 28000 часов.
Тихоходный вал
Эквивалентная нагрузка. Осевые составляющие реакций опор:
SC= 0,83eC = 0,83×0,41·6040 = 2055 H,
SD = 0,83eD = 0,83×0,41×4559 = 1551 H.
Результирующие осевые нагрузки:
FaC = SC =2055 H,
FaD = SC + Fa =2055+464 = 2519 H.
Проверяем подшипник C.
Отношение Fa/Fr= 2055/6040 = 0,34 < e, следовательно Х=1,0; Y=0.
Р = (1,0×1,0×6040+0)1,4×1,0 = 8456 Н.
Проверяем подшипник D.
Отношение Fa/Fr= 2519/4559 = 0,55 > e, следовательно Х=0,4; Y=1,45
Р = (1,0×0,4×4559+1,45∙2519)1,4×1,0 = 7666 Н.
Требуемая грузоподъемность подшипника:
Стр = Р(573wL/106)0,3 =
= 8456(573×3,04×28000/106)0,3 = 27,1 кH < C = 42,7 кН
Условие Стр < C выполняется.
Расчетная долговечность подшипников
= 106(42,7×103 /8456)3,333/60×29 =126890 часов,больше ресурса работы привода, равного 28000 часов.
10. Конструктивная компоновка привода
Конструирование червячного колеса
Конструктивные размеры колеса
Диаметр ступицы:
dст = 1,6d3 = 1,6·55 = 88 мм.
Длина ступицы:
lст = (1÷1,5)d3 = (1÷1,5)55 = 55÷82 мм,
принимаем lст = 60 мм
Толщина обода:
S = 0,05d2 = 0,05·200 =10 мм
Толщина диска:
С = 0,25b = 0,25·44 =11 мм
Конструирование валов
Основные размеры ступеней валов (длины и диаметры) рассчитаны в пункте 7.
Переходные участки между ступенями выполняются в виде канавки шириной b = 3 мм или галтели радиусом r = 1 мм.
Червяк выполняется заодно с валом.
Размеры червяка: dа1 = 60 мм, b1 = 60 мм.
10.3Выбор соединений
В проектируемом редукторе для соединения валов с деталями, передающими вращающий момент, применяются шпоночные соединения.
Используем шпонки призматические со скругленными торцами по ГОСТ 23360-78. Длина шпонки принимается на 5…10 мм меньше длины ступицы насаживаемой детали. Посадка для червячного колеса Н7/r6.
Конструирование подшипниковых узлов
В проектируемом редукторе используется консистентная смазка подшипниковых узлов. Для изолирования подшипникового узла от внутренней полости редуктора применяются мазудерживающие кольца шириной 10…12 мм, а изоляция выходных участков валов от окружающей среды достигается с помощью манжетных уплотнений по ГОСТ 8752-79. Внутренне кольцо подшипника упирается в мазеудерживающее кольцо, а наружное фиксируется распорной втулкой между подшипником и врезной крышкой подшипника. Верхняя опора – плавающая.
Конструирование корпуса редуктора /2/
Толщина стенок корпуса и крышки редуктора
d = 0,04ат + 2 = 0,04·125 + 1 = 6,0 мм принимаем d = 8 мм
Толщина фланцев
b = 1,5d = 1,5·8 = 12 мм
Толщина нижнего пояса корпуса
р = 2,35d = 2,35·8 = 20 мм
Диаметр болтов:
- фундаментных
d1 = 0,036aт + 12 = 0,036·125 + 12 = 16,5 мм
принимаем болты М16;
- крепящих крышку к корпусу у подшипников
d2 = 0,75d1 = 0,75·20 = 15 мм
принимаем болты М16;
- соединяющих крышку с корпусом
d3 = 0,6d1 = 0,6·20 = 12 мм
принимаем болты М12.
Конструирование элементов открытых передач
Ведущий шкив.
Диаметр шкива d1 = 71 мм
Диаметр шкива конструктивный de1 = d1 – 2t = 71 – 2∙1,0 = 69,0 мм
Ширина шкива B = (z – 1)p + 2f = (5– 1)2,4+ 2∙3,5= 17 мм
Толщина обода δ = 1,6е = 1,6∙2,35 = 3,76 мм
принимаем δ= 4 мм
Толщина диска С = (1,2…1,3)δ = (1,2…1,3)4 = 4,8…5,2 мм
принимаем С = 5 мм.
Диаметр ступицы внутренний d = dдв = 19 мм
Диаметр ступицы наружный dст = 1,6d = 1,6∙19 = 30,4 мм
принимаем dст = 30 мм
Длина ступицы lст = lдв = 40 мм.
Ведомый шкив.
Диаметр шкива d1 = 160 мм
Диаметр шкива конструктивный de1 = d1 – 2t = 160 – 2∙1,0 = 158 мм
Диаметр ступицы внутренний d = d1 = 20 мм
Диаметр ступицы наружный dст = 1,6d = 1,6∙20 = 32 мм
принимаем dст = 32 мм
Длина ступицы lст = l1 = 40 мм.
Выбор муфты
Для передачи вращающего момента с ведомого вала редуктора на вал тяговой звездочки выбираем муфту упругую с торообразной оболочкой по ГОСТ 20884-82 с допускаемым передаваемым моментом [T] = 315 Н·м.
Расчетный вращающий момент передаваемый муфтой
Тр = kТ1 = 1,5·184,5 = 277 Н·м < [T]
где k = 1,5 – коэффициент режима нагрузки.
Условие выполняется
Смазывание.
Смазка червячного зацепления
Смазка червячного зацепления осуществляется за счет разбрызгивания масла брызговиками установленными на червячном валу. Объем масляной ванны
V = (0,5¸0,8)N = (0,5¸ 0,8)0,70 »0.5 л
Рекомендуемое значение вязкости масла при v = 1,0 м/с и контактном напряжении σН=146 МПа ®n =28·10-6 м2/с
По этой величине выбираем масло индустриальное И-Т-Д-220
Смазка подшипниковых узлов. Так как надежное смазывание подшипников за счет разбрызгивания масла возможно только при окружной скорости больше 3 м/с, то выбираем пластичную смазку по подшипниковых узлов – смазочным материалом УТ-1.
11. Проверочные расчеты
Проверочный расчет шпонок
Выбираем шпонки призматические со скругленными торцами по ГОСТ 23360-78.
Материал шпонок – сталь 45 нормализованная.
Напряжение смятия и условие прочности
где h – высота шпонки;
t1 – глубина паза;
l – длина шпонки
b – ширина шпонки.
Быстроходный вал.
Шпонка на выходном конце вала: 6×6×32.
Материал шкива – чугун, допускаемое напряжение смятия [σ]см = 50 МПа.
σсм = 2·11,6∙103/20(6-3,5)(32-6) = 17,8 МПа
Тихоходный вал.
Шпонка под колесом 16×10×50. Материал ступицы – чугун, допускаемое напряжение смятия [σ]см = 50 МПа.
σсм = 2·184,5·103/55(10-6,0)(50-16) = 49,3 МПа
Шпонка на выходном конце вала: 12×8×80. Материал полумуфты – чугун, допускаемое напряжение смятия [σ]см = 50 МПа.
σсм = 2·184,5·103/40(8-5,0)(80-12) = 45,2 МПа
Во всех случаях условие σсм < [σ]см выполняется, следовательно устойчивая работа шпоночных соединений обеспечена.1
Проверочный расчет стяжных винтов подшипниковых узлов
Стяжные винты рассчитывают на прочность по эквивалентным напряжениям на совместное действие растяжения и кручения.