Смекни!
smekni.com

Пожарная безопасность установки первичной перегонки нефти (стр. 4 из 6)

3. Количество испарившейся жидкости определяется по формуле:

m = WFИt,

где W – интенсивность испарения кг . с-1. м-2; FИ – площадь испарения, принимается, что 1 л разливается на 1 м2; t = 1 ч =3600 с – время испарения .

Интенсивность испарения определяется по формуле :

где h = 1 коэффициент, принимаемый по табл. 3 в зависимости от скорости и температуры воздушного потока над поверхностью испарения; Рн – давление насыщенного пара при расчетной температуре жидкости tр определяемое по справочным данным в соответствии с требованиями п. 1.4. кПа; М = 57 кг/моль молярная масса.

Давление насыщенного пара определяем по формуле :

170,2 кПа.

Определяем интенсивность испарения:

W = 10-6. 1

=187,2 . 10-5 кг. с-1. м-2.

Определяем объем вылившейся нефти:

= 1800000 л.

Тогда количество испарившейся жидкости равно:

m = 187,2 . 10-5. 1800000 . 3600 = 12130560 кг.

Определяем объём взрывоопасной концентрации по формуле:

,

где jн,г,без – нижний концентрационный предел воспламенения кг . м-3, определяется по формуле :

,

где Vt – молярный объём паров при рабочих условиях м3. кмоль-1; определяется по формуле

,

где VO = 22,4135 м3. кмоль-1 – молярный объём паров при нормальных условиях; Т0 = 273,15К – температура при нормальных физических условиях (t0 = 00C); Тр = 250С – рабочая температура (по условию); Р0 = 101,325 кПа – давление при нормальных условиях; Робщ – общее давление в системе (по условию нефть находится в аппарате при атмосферном давлении 101,325 кПа). Значит:

24,45м3;

Тогда:

кг . м-3,

Следовательно, объём взрывоопасной концентрации составит:

м3.

6. Анализ характерных технологических источников зажигания

6.1. Тепловое проявление механической энергии

При ремонте и эксплуатации технологического оборудования имеет место высечение искр при использовании искрящего инструмента. Размеры искр удара и трения, которые представляет собой раскаленную до свечения частичку металла, обычно не превышающую размера 0,5 мм, а их температура находится в пределах температуры плавления металла. Температура искр, образующихся при соударении металла, способных вступить в химическое взаимодействие друг с другом с выделением значительного количества тепла, и может превышать температуру плавления.

Определим расчетом количество теплоты, отдаваемое каплей металла при искрении пролитого нефтепродукта, на которое она упала:

где: W – количество теплоты, Дж;

Vк – объем капли, м3;

ρ – плотность металла кг/м3;

lt – удельная теплоемкость металла при температуре 0,5(tп+tсв), Дж/кгК;

tсв – температура самовоспламенения нефти, оС.

,

где: dк – диаметр капли, м.

VК=0,524 1,25 10-10=6,55 10-11м3

Из приведенного расчета можно сделать вывод, что энергии данной искры будет недостаточно для воспламенения нефти с большой энергией зажигания

Wрасч.=0,12Дж<[W=1,3Дж]

Наиболее опасными по возможности перегрева являются подшипники скольжения сильно нагруженных и высокооборотных валов. К увеличению сил трения, а, следовательно, и количество выделяющегося тепла могут привести нарушение качества смазки рабочих поверхностей, загрязнения, перекосы, перегрузка двигателя насосов и чрезмерная затяжка подшипников.

Рассчитаем температуру подшипника по перекачки бензиновых фракций с подшипниками, диаметр вала 0,45 м. Коэффициент теплообмена между поверхностью подшипника и средой 150 Вт/м2.К, температура окружающей среды 25оС, коэффициент трения 0,15, число оборотов вала 3000 1/мин. сила действующая на подшипник 3000 Н, поверхность подшипника 0,08 м2

Определим мощность сил трения [1], [2].

где: f – коэффициент трения;

N – радиальная сила, действующая на подшипник, Н;

d – диаметр шейки вала, м;

n – число оборотов вала, 1/мин.

Определим максимальную температуру корпуса подшипника:

где: Тп – максимальная температура подшипника, К;

Тв – температура окружающей среды, К;

α – коэффициент теплообмена между поверхностью подшипника и средой, Вт/м2.К;

F – поверхность корпуса подшипника, м2.

На основании проведенного расчета делаем вывод, что температура подшипника превышает температуру самовоспламенения бензина tп=5630С>tсв=3000С следовательно при попадании бензина на поверхность подшипника произойдет его воспламенение. Для исключения перегрева подшипников необходимо осуществлять постоянный контроль установкой термопар с выводом на пульт управления.

6.2.Открытые источники огня

Пожары, вызванные открытым огнем довольно частое явление. Это объясняется не только тем, что открытый огонь широко используется для производственных целей, при аварийных и ремонтных работах и поэтому нередко создаются условия для случайного контакта пламени с горючей средой, но и тем, что температура пламени, а также количество выделяющегося при этом тепла достаточно для воспламенения почти всех горючих веществ. Трубчатые печи с огневым обогревом характеризуются наличием горящего топлива, высоко нагретой теплообменной поверхностью и раскаленными конструктивными элементами топки. При сжигании газообразных веществ действительная температура горения колеблется в пределах 1200-14000С, жидкостей 1100-13000С.

При такой температуре аппаратов огневого действия всякие повреждения и аварии смежных аппаратов, сопровождающиеся выходом наружу горючих жидкостей, паров или газов и распространением их в сторону печей, неизбежно приведут к возникновению вспышки и пожару. Для безопасного ведения процесса необходимо предусматривать паровую защиту печей.

Значительную пожарную опасность представляют собой огневые ремонтные и монтажные работы. Пожарная опасность обусловлена не только открытым пламенем, но и наличием раскаленного и расплавленного металла. При газовой сварке температура пламени дуги при использовании угольных электродов составляет 3200-39000С, стальных электродов 2400-26000С. При попадании на горючие материалы искры воспламеняют их.

6.3. Тепловое проявление химической реакции

По условиям технологии, находящиеся в ректификационных колоннах, трубчатых печах, насосах, жидкости нагреты до температуры превышающей температуру их самовоспламенения. Появление неплотностей в аппаратах и трубопроводах и соприкосновение с воздухом выходящего наружу продукта, нагретого выше температуры самовоспламенения, сопровождается его загоранием.

Определенную опасность в возникновении загораний и пожаров являются случаи самовозгорания отложений сернистых соединений железа. Окисление сернистых соединений железа начинается с подсыхания поверхности и соприкосновения ее с кислородом воздуха, при этом температура постепенно повышается, появляется голубой дымок, а затем и пламя. В результате этого отложения разогреваются иногда до температуры 600-7000С.

Избежать самовозгорания сернистого железа можно путем химической очистки от сероводорода, поступающих на обработку нефтепроводов и самой нефти.

7. Возможные пути распространения пожара

Пожары на нефтеперерабатывающих заводах протекают в сложных условиях с быстрым распространением огня на соседние аппараты и участки, и, зачастую, принимают характер катастрофы с огромным материальным ущербом. Наличие больших объемов легковоспламеняющихся и горючих жидкостей приводит к тому, что пожар на установке может принять значительные размеры. Условиями распространения горения на установке являются: разливы по территории установки горючих и легковоспламеняющихся жидкостей; разветвленная сеть промышленной канализации при неэффективности гидравлических затворов в колодцах; отсутствие аварийных сливов из емкостных аппаратов, линий стравливания газовоздушных смесей из аппаратов; разветвленная сеть трубопроводов при отсутствии на них гидравлических затворов. При пожаре возможен взрыв, так как имеет место образование взрывоопасных концентраций в них. Испарение паров легковоспламеняющихся жидкостей и газов будет создавать газовоздушную смесь, которая при ветреной погоде будет перемещаться к возможному очагу пожара.