Смекни!
smekni.com

Проектирование двигательной установки и элементов конструкции второй ступени баллистической ракеты (стр. 14 из 24)

Дозвуковая часть сопла выполнена в виде плавных переходов с прямолинейным участком под углом

для обеспечения наименьших потерь при течении газа в сужающемся канале.

Сверхзвуковая часть сопла спрофилирована графическим методом. Камера представляет собой паяно-сварную конструкцию, состоящую из форсуночной головки, цилиндрического и докритического участков с закритической частью, и закритической части сопла.

6.2 Форсуночная головка

Форсуночная головка состоит из силового кольца, огневого днища, среднего днища, сферического наружного днища и двухкомпонентных форсунок.

Полость горючего образована наружным сферическим и средним днищами. Полость окислителя – средним и огневым днищами.

Среднее и огневое днища связаны между собой однокомпонентными форсунками посредством развальцовки и пайки кислотостойким припоем, устанавливаемым в местах соединений в виде колец. Пайка производится в вакууме. Всего форсунок 499, из них 409 центробежных и 90 струйных.

Из 409 однокомпонентных центробежных форсунок 325 выполнены с увеличенным расходом и установлены в центре ФГ по сотовой схеме. Вокруг ядра по двум концентрическим окружностям установлены 84 центробежных форсунок окислителя уменьшенного расхода, аналогичных по конструкции форсункам увеличенного расхода. На периферии огневого днища по концентрической окружности установлены 90 форсунок горючего для создания пристеночного слоя. Такое расположение форсунок обеспечивает эшелонированный фронт пламени по длине камеры сгорания, что приводит к устойчивой форме горения, к ликвидации высокочастотных колебаний и создания защитного пристеночного слоя.

В центре огневого днища приварен стакан с 6 антидетонационными ребрами, которые дополнительно привариваются к огневому днищу прерывистым швом с двух сторон и к силовому кольцу по внутренней его поверхности. В силовом кольце для подвода компонентов к форсункам окислителя и горючего просверлено по 45 отверстий во взаимно перпендикулярных плоскостях. Между сферическим днищем и средним установлены два перфорированных стакана для придания жесткости блоку плоских днищ. К силовому кольцу приварен коллектор горючего с двумя патрубками с двумя трубопроводами, к которым приварен наконечник с дроссельной шайбой. К наконечнику приварен штуцер для отвода горючего к стабилизатору соотношения компонентов.

Кроме того, на головке камеры приварены штуцер для замера давления окислителя в полости перед форсунками, штуцер для замера давления перед форсунками горючего и три кронштейна для крепления к раме ракеты. Все детали головки, кроме форсунок соединены между собой аргонно-дуговой сваркой.

6.3 Цилиндрический и докритический участки камеры с частью закритического участка сопла

Цилиндрический участок камеры выполнен из двух оболочек, связанных между собой с помощью ребер при помощи пайки кислотостойким припоем.

Докритический участок сопла с частью закритического участка выполнен также из двух оболочек, связанных между собой кислотостойким припоем. Внутренняя оболочка выполнена из легированной стали. Каналы для охлаждения указанной части сопла на внутренней оболочке выполнены фрезерованием. Закритический участок внутренней оболочки из первоначальной цилиндрической доводится до заданного профиля после сборки с внешней оболочкой путем обкатки роликом. Наружная оболочка также выполнена стальной. К внутренней оболочке цилиндрической части камеры сгорания с двух сторон приварены кольца большей толщины для обеспечения более качественной сварки оболочки с силовым кольцом головки, с одной стороны, и для осуществления сварки внутренней стальной цилиндрической оболочки с внутренней оболочкой докритической части сопла с другой стороны. На цилиндрической части камеры сгорания установлено два штуцера для замера давления в ней.

6.4 Закритическая часть сопла

Указанная часть сопла аналогична по конструкции цилиндрической части камеры. Выполнена она из двух стальных конических оболочек, соединенных между собой ребрами при помощи кислотостойкого припоя. Каналы ребер выполнены вдоль образующей сопла.

Коллектор с двумя трубопроводами, переходящими в патрубок с наконечником и дроссельной шайбой, служит для подвода горючего в межрубашечное пространство. К наконечнику приварен штуцер для отбора окислителя к стабилизатору соотношения компонентов. Сопло заканчивается кольцом жесткости, к которому приварены обе оболочки. В кольце жесткости для образования поворотной полости коллектора, выполнена кольцевая проточка.

6.5 Соединение узлов камеры сгорания

Цилиндрический участок камеры соединяется с головкой при помощи сварки: внутренняя оболочка с силовым кольцом – через кольцо большей толщины, чем сама оболочка, а внешняя оболочка с силовым кольцом – через переходное кольцо.

Цилиндрический участок соединяется с докритическим участком также при помощи сварки: внутренние оболочки, стальная цилиндрическая и стальная докритическая – через кольцо из пластичной нержавеющей стали, а внешние оболочки через переходное разрезное кольцо.

Закритическая часть сопла присоединяется также сваркой: по внутренним оболочкам через переходное кольцо из пластичной стали, а по внешним оболочкам – через переходное разрезное кольцо, имеющее продольный шов. Вокруг критического сечения приварено кольцо с кронштейнами. К кронштейну крепится турбонасосный агрегат, регулятор и шар-баллон. Кроме того, к кронштейну крепится сигнализатор давления.

6.6 Система охлаждения

Охлаждение двигателя наружное и внутреннее. Наружное охлаждение осуществляется горючим, идущим по межрубашечному зазору со стороны среза сопла. Внутреннее охлаждение осуществляется при помощи пристеночного слоя создаваемого рядом периферийных струйных форсунок. Внутренние оболочки цилиндра и сопла выполнены толщиной 0,8 мм, высота межрубашечного зазора постоянная – 2,5 мм. Ребра выполнены фрезерованием толщиной 1 мм. Внутренняя оболочка входа докритической части сопла покрыта блестящим хромом толщиной 40-60 микрон.

Таблица №1.20

Материалы, примененные в конструкции прототипа

Внутренние оболочки цилиндра и сопла, гофр, огневое днище, среднее днище, все корпуса форсунок, сетки фильтров. Ст.12Х18Н10Т
Наружное сферическое днище, силовое кольцо, коллекторы, наружная оболочка цилиндрической части, докритической и закритической части сопла, соединительное кольцо цилиндрической и докритической частей камеры. Ст.1Х17Н5М8
Переходные кольца внутренней оболочки Ст. 1Х21Н5Т
Припой Г40НХ

6.7 Описание насоса окислителя

Таблица №1.21

Основные параметры проектируемого насоса

Тип рабочего колеса Центробежное закрытое с осевым преднасосом
Расход
Давление на входе
на выходе
Мощность потребляемая
Коэффициент полезного действия

6.8 Корпус

Корпус насоса изготовлен из алюминиевого сплава совместно с улиткой. На наружной поверхности корпус насоса усилен семью ребрами жесткости. В корпусе насоса в полости импеллера выполнено отверстие диаметром 10 мм для образования перепускной магистрали из полости подшипника на вход в насос. Эта полость с входом в насос соединена внешним трубопроводом. Фланец трубопровода крепится к корпусу насоса двумя шпильками.

Входной патрубок насоса окислителя выполнен стальным за одно целое с развитым фасонным фланцем. На входе в патрубок установлена конусная втулка на трех пилонах под передний подшипник вала ротора насоса окислителя.

По наружной поверхности входного патрубка приварен коллектор для приема компонента из импеллерной полости. Трубопровод приваривается к этому коллектору. Под коллектором в корпусе входного патрубка выполнено 36 отверстий диаметром 2 мм под углом 450 к оси патрубка.

Улитка спрофилирована переменным радиусом при постоянной ширине канала. Диффузор выполнен за одно целое с улиткой. Входная его часть имеет прямоугольную форму. Заканчивается диффузор фасонным фланцем с шестью шпильками М8.

6.9 Рабочее колесо

Рабочее колесо представляет собой единый узел, состоящий из центробежного колеса и осевого шнекового преднасоса. Центробежное колесо насоса выполнено из алюминиевого сплава. Крыльчатка имеет 7 фрезерованных лопаток. Закрытые каналы колеса образованы при помощи пайки к лопаткам крыльчатки двух крышек.

На ступицы крышек насоса напрессованы стальные втулки для образования плавающих уплотнений.

Стальной шнек двухзаходный, с правым направлением винтовой линии постоянного шага. Цапфа шнека запрессована в вал ротора насоса. При запрессовке вал нагревается до температуры 1500 С.

Фиксация шнека относительно вала ротора насоса осуществлена радиальным штифтом, который закрыт дистанционным кольцом, установленным между ступицей колеса и внутренней обоймой фиксирующего подшипника. Крутящий момент от вала передается на вал насоса через рессору. Вал насоса воспринимает крутящий момент через шлицы, нарезанные на его внутреннем диаметре, а передает к насосу через шлицы, нарезанные по наружному диаметру вала. Для устранения осевых перемещений рессоры в процессе работы ТНА рессора со стороны насоса окислителя прижата к диску турбины пружиной, вставленной в цилиндрическую проточку цапфы шнека.