Смекни!
smekni.com

Технологические особенности переработки синтетических каучуков (стр. 3 из 4)

3.4 Приготовление смесей на основе бутадиен-нитрильных каучуков

Бутадиен-нитрильные каучуки (СКН) - сополимеры бутадиена и нитрила акриловой кислоты производятся различной твердости (жесткости) и вязкости. Их свойства и перерабатываемость в значительной мере зависят от содержания нитрильных групп, которые сообщают структурным единицам способность к межмолекулярному взаимодействию, снижают гибкость полимерных цепей и способствуют возникновению сшитых и разветвленных структур.

Специфичным для СКН является высокая энергоемкость смешения и затрудненное распределение ингредиентов в смеси. Бутадиен-нитрильные каучуки типов СКН-26 и СКН-40 с вязкостью по Муни порядка 90-120 ед. и жесткостью 18-22 Н пластицируются на холодных вальцах 60 или 84 дюйма при минимальных зазорах. Энергоемкость пластикации значительно выше, чем для НК или БСК и составляет около 1,8 кВт-ч/кг (для БСК <и НК на пластикацию требуется 1 и 0,85 кВт ч/кг соответственно). Это обстоятельство, по-видимому, связано прежде всего с высокой вязкостью СКН, примерно в 2 раза превышающей вяз/кость каучуков общего назначения (энергия Обработки прямо пропорциональна вязкости материала) [11].

Смешение сопровождается большими тепловыделениями и повышением температуры, поскольку системы теплообмена смесителей и вальцев не позволяют отобрать избыточное тепло. При повышенных температурах и механических напряжениях в смесях наоснове СКН в отличие от смесей на основе СКИ или БСК преобладаетпроцесс структурирования, вязкость растет с увеличением температуры и длительности обработки. С введением в смесь высокоактивных и структурных типов технического углерода типаФИФ, ХАФ, ПМ-70, ПМ-100 еще больше возрастает вязкость и образуется жесткий СКГ. Это приводит к такому возрастанию жесткости, что дальнейшая обработка смесей и их профилирование очень затрудняются.

В этом случае процесс смешения надо проводить при пониженных температурах, а поскольку теплообразование уменьшается с уменьшением скорости обработки, то и при небольших скоростях вращения роторов или валков (10-20 об/мин).

Специфическим для СКН технологическим приемом, позволяющим снизить температуру смесей, является одновременное введение в смеситель технического углерода и мягчителей, что замедляет процесс структурирования, увеличивает в два раза время до начала подвулканизации, но несколько ухудшает распределение наполнителя в полимере.

При высоком наполнении (свыше 80 масс, ч) технический углерод следует вводить в каучук в два-три приема, тщательно перемешивая заправку каждый раз при опущенном верхнем затворе. Эффективным для снижения структурирования и улучшения свойств смесей и вулканизатов является использование двухстадийных режимов смешения. Это особенно полезно, когда наполнение велико, а содержание мягчителя мало.

Серу значительно лучше распределять, если ее вводить в начале цикла в резиносмеситель, а не на вальцах (коэффициент разброса концентрации серы в готовой смеси 14-12% в резиносмесителе и 23-22% на вальцах).

Другим специальным рецептурно-технологическим приемом является использование временных пластификаторов типа поли-меризационностюсобных олигоэфиракрилатов [11]. При введении ОЭА в резиновые смеси вязкость падает, как и при введении обычных мягчителей; при этом снижаются теплообразования и энергозатраты на смешение.

Однако действие ОЭА как пластификаторов исчерпывается на стадии смешения и их добавки (до 5-8%) не снижают прочностных показателей вулканизатов. В процессе вулканизации каучуколигомерных систем в присутствии инициаторов радикальных реакций протекает химическая прививка молекул ОЭА к цепи СКН, облегчающаяся сходством их химической природы. Происходит дополнительное структурирование СКН и образование в нем микроучастков жесткой структуры гомополимера ОЭА, играющих роль активного наполнителя [11].

4. КАЛАНДРОВАНИЕ РЕЗИНОВЫХ СМЕСЕЙ

Каландрование - непрерывный процесс формования резиновой смеси, при котором масса размягченного и разогретого материала формуется с помощью приводных валков в бесконечные ленты.

При каландровании требуется выпускать листы резиновой смеси с возможно более гладкой поверхностью и однородной толщиной по длине и ширине. Ширину и толщину (калибр) таких листов необходимо при этом регулировать с высокой степенью точности (до 1-2%) [2-4]. Предполагается, что смесь уже достаточно гомогенизирована и «разогрета. В связи с этим в листовальном каландре скорости калибрующих валков практически одинаковы (фрикция отсутствует), поверхности валков полированы, имеются специальные устройства, обеспечивающие компенсацию деформации и прогиба валков под нагрузкой.

Каландры используют также для обрезицивания технических тканей, например, корда или чефера [9]. Гидродинамика, реология и механика процесса «чистого» каландрования и обрезинивания тканей имеет много общего.

В четырехвалковом каландре имеются три зазора между валками. Масса, обработанная в смесителе и разогретая на вальцах или в червячной машине холодного питания, подается в зазор между валками и по мере прохождения через него уменьшается в толщине, увеличиваясь при этом в ширине. Материал налипает на нижний валок, так как температура этого валка отличается от температуры верхнего: выше на 3-4° при переработке смесей на основе НК или ниже на 2-3° для смесей на основе СК.

Во втором зазоре процесс повторяется, что приводит к дальнейшему уменьшению калибра и некоторому увеличению ширины листа. И, наконец, после прохождения последнего зазора лист выходит с заданными размерами по толщине и ширине.

Скорость движения материала, захватываемого валками, увеличивается по мере прохождения зазора и в минимальном зазоре достигает максимального значения, превышающего среднюю окружную скорость валков, так как к скорости переноса материала здесь прибавляется скорость деформации. При выходе из зазора скорость массы уменьшается, пока не сравняется со скоростью движения валка. При этом толщина листа по сравнению с минимальным зазором несколько увеличивается, что связано с материальным балансом потока материала. Помимо увеличения толщины листа при уменьшении скорости материал разбухает, или эластически восстанавливается, из-за вязкоупругости.

Давление, деформирующее эластомер в зазоре, вызывает прогиб валков. Это давление, равно как нормальные и тангенциальные напряжения в зазоре, необходимо определять при конструировании и эксплуатации каландра, чтобы рассчитать конструкцию, выбрать привод, оценить возможность переработки смесей новых рецептур (например, с повышенной вязкостью и жесткостью) соответствующий температурный режим процесса и установить нужные зазоры.

Неучет этих обстоятельств может привести не только к технико-экономическому проигрышу, но даже к авариям и поломкам каландра.

Конструкции каландров отличаются большим разнообразием. В четырехвалковых каландрах валки могут быть расположены вертикально, в виде букв Z, Lили 5. Имеются также треугольные трехвалковые кордные каландры, двух-, пяти- и шестивалковые машины. При каландровании применяют высокие (до 60- 80 м/мин) скорости.

Для выпуска листов с заданными размерами и допусками применяют каландры с жесткой регулируемой посадкой валков, исключающей их произвольное смещение. Тем не менее необходимо контролировать и регулировать толщину листа (например, лучевым калибромером с автоматической следящей и корректирующей системой путем изменения зазора и частоты вращения валков.

Необходимо учитывать прогиб тяжелых валков, фиксированных по концам, подобно закрепленной балке, а также из-за распорных усилий при деформации резиновой смеси.


5. ОБРАБОТКА РЕЗИНОВЫХ СМЕСЕЙ НА ВАЛКОВЫХ МАШИНАХ

Вальцевание и каландрование являются широко распространенными процессами в резиновой промышленности [1].

При внешнем сходстве вальцов и каландров требования, предъявляемые к соответствующим процессам, а также к вальцованным и каландрованным заготовкам совершенно различны.

Вальцевание производят обычно либо для гомогенизации резиновой смеси, выгружаемой из смесителя, либо для подогрева ее перед подачей в кордные или протекторные линии. Смешение на вальцах предпочитают проводить в тех случаях, когда работают с особо вязкими материалами. Иногда при вальцевании вводят в смесь некоторые ингредиенты (например, серу) или готовят всю смесь (обычно в производстве РТИ). Частота вращения одного 'валка обычно на 25% выше, чем другого. Такая разница, или фрикция, обеспечивает дополнительное сдвиговое воздействие и улучшает смешение. Качество (гладкость) поверхности вальцованных листов смеси и их толщина могут широко изменяться (допуски на толщину листов смеси после вальцевания могут быть около ±10% и выше).

При вальцевании обеспечивается хороший теплоотвод и поддерживается сравнительно низкая температура поверхностей валков, что позволяет достигать высоких напряжений сдвига и значений накопленной деформации сдвига yz, обеспечивающих хорошее диспергирование ингредиентов и гомогенизацию смеси. При этом для достижения высоких значений накопленной деформации сдвига 72 используют операции подрезки и заворачивания смеси в рулон. Подавая затем рулон торцом в зазор вальцов, добиваются хорошего смешения. Выпускают производственные вальцы с длиной рабочей части валков 630, 800, 1500, 2130 мм, а также лабораторные, с длиной валков 320 мм и меньше.

При работе на лабораторных вальцах зазор обычно много меньше, чем на производственных. Охлаждаются (нагреваются) лабораторные вальцы также гораздо лучше. Если сравнить поведение смесей при вальцевании на лабораторных и производственных вальцах, то в последнем случае накопленная за цикл деформация Ys будет меньше, а качество смешения - хуже. В лаборатории вальцевание производят в оптимальных условиях, которые, как и качество обработки, не всегда реализуются в производстве. Очевидно, что для перехода от лабораторных условий к производственным нужно учитывать соотношения подобия.