Смекни!
smekni.com

Проектирование воздушно-динамического рулевого привода управляемой гиперзвуковой ракеты зенитного (стр. 2 из 13)

Системы приводов, использующие аэродинамический напор воздуха, обладают следующими свойствами:

- независимость габаритов силовой системы от времени работы,

- соответствие располагаемых и требуемых характеристик в широком диапазоне скоростей, постоянство фазового сдвига в широком диапазоне частот вращения.

1. В состав РП входят:

1) две рулевые машины (РМ);

2) шпангоут с аэродинамическими рулями;

3) воздухозаборное устройство;

4) блок усилителей,

5) теплоотборник

2. Основные технические требования к РП следующие:

1) РП двухканальный, воздушно-динамический. Зависимость отклонения рулей от входного сигнала пропорциональная;

2) максимальный угол отклонения рулей αm = ±25o±l °;

3) форма и геометрические размеры руля представлены на рис. 1.1

Рис. 1.1. Геометрическая форма и размеры руля.


4) динамические характеристики РП обеспечиваются в диапазонах:

чисел Маха (М)........................................ от 1,1 до 5,5

частот вращения по крену (Гц)....................от 3,0 до 21,0

температур воздуха на входе (Та), К........ от 223 до 2140

шарнирных нагрузок (Мш) Нּм................... от минус 0,1 до минус 6,35;

избыточных давлений (Pи), Па от 1,2-10 до 38,0-10

5) РП обеспечивает заданные динамические характеристики с момента начала управления (ty) при М > 1,1:

ty= 0,59 с при Та =-50°С;

ty= 0,50 c при Та = 20°С;

ty= 0,37 c при Та = 50°С;

6) фазовые сдвиги РП при синусоидальном входном сигнале в диапазоне частот вращения fmin -f max и амплитудах входного сигнала 0-25° от минус 5 до минус 25°;

7) нормированный коэффициент передачи в линейной зоне по первой гармонике при синусоидальном входном сигнале в условиях работы ракеты и с учетом погрешности изготовления при номинальном напряжении питания

k = 0,7-1,15;

8) номинальное значение коэффициента передачи, относительно ко-торого нормируется коэффициент передачи РП,

kном = 5,8°/В. Коэффициент передачи изменяется обратно пропорцио-нально питающему напряжению.

9) ненули на выходе РП (Δδ) с момента начала управления (М ≥ 1,1) не более 2,5°, до начала управления Δδ≤ = ± 25°;

10) РП должен быть стойким, прочным и устойчивым на всех этапах эксплуатации к воздействию внешних факторов в соответствии с требованиями ТЗ и требованиями ГОСТ В20.39.302-76, ГОСТ В20.39.303‑76, ГОСТ В20.39.304-76, ГОСТ В20.39.308-76, предъявляемыми к изделиям классификационной группы 4.3 с учетом требований групп 1.7 и 1.13;

11) время боевой работы РП на траектории не менее 18,8 с. Ресурс работы РП не менее 2 ч, в том числе с подачей пневмопитания -1ч.

Успех проектирования зависит не только от типа привода, но и от его структуры. При выборе структуры привода необходимо принимать во внимание требования, предъявляемые к приводу: ограничения по динамическим характеристикам, массо-габаритные характеристики, величина потребляемого тока от источника энергии. В системах приводов применяются структуры систем непрерывного и релейного действия. Системы приводов непрерывного действия более трудоемки в сравнении с системами релейного действия, так как их элементы должны иметь линейные статические характеристики. В системах приводов релейного действия используются более простые элементы: усилитель мощности, электромагнит, распределитель функционируют в двухпозиционном режиме. Автоколебания системы приводов не требуют обеспечения устойчивости. Наиболее просты разомкнутые системы приводов, но по сравнению с системами приводов с обратной связью требуемые динамические характеристики в них обеспечиваются за счет повышения мощности привода. Привод с большой мощностью требует большого расхода энергии: электромеханический преобразователь должен иметь большой электромагнитный момент, что обуславливает увеличение его объема и массы; от усилителя мощности требуется большая мощность для управления. Все это приводит к существенному увеличения объема и массы системы привода. В замкнутой системе привода вводятся датчик обратной связи, измеритель ошибки. Обычно они занимают малые объемы, имеют малые массы. Автоколебательные системы имеют лучшие динамические характеристики.

Поэтому, приходим к выводу, что при заданных нагрузках и требуемых динамических характеристиках целесообразно, для обеспечения минимальных габаритов и массы летательного аппарата, применение замкнутого автоколебательного рулевого привода, использующего в качестве рабочего тела скоростной напор встречного потока воздуха.

Перспективность проектирования рулевого привода релейного действия обусловлена следующими преимуществами: в замкнутом контуре обеспечиваются высокочастотные автоколебания малой амплитуды, благодаря которым линеаризуются нелинейности в механической передаче (люфт, трение покоя), в электромагните (зона нечувствительности) и практически исключается их влияние на преобразование управляющих сигналов; достигается высокая динамическая точность; система состоит из меньшего числа элементов по сравнению с системами непрерывного действия; система релейного действия проста в изготовлении, так как не требует регулировки; требует минимального объема проверок.

1.2 Принцип действия РП

При полете управляемой ракеты набегающий поток воздуха через носовой воздухозаборник, теплообменник и распределительное устройство проходит в рабочие полости РМ. С блока усилителей сигнал ошибки, равный разности сигналов управления и датчика обратной связи, подается поочередно на одну или другую обмотки управляющего электромагнита. При поступлении сигнала в одну из обмоток якорь притягивается к ней и устанавливает струйную трубку напротив соответствующего окна приемника. Воздух поступает в рабочую полость, и в ней устанавливается максимальное давление, одновременно вторая полость оcвобождается. Под действием разницы рабочих давлений в рабочих полостях рули смещаются пропорционально входному сигналу, совершая при этом высокочастотные автоколебания. При отсутствии - входного сигнала автоколебания совершаются относительно нулевого положения рулей.


1.3 Математическое описание функционирования воздушно-динамического привода

Состояние физического тела — однородного газа — в некотором проточном объёме Wi в каждый момент времени характеризуется совокупностью следующих параметров:

- давления Pi

- удельного весаγi

- температуры Ti.

Для этого газа, полагая его идеальным, справедливо уравнение состояния:

(1.3.1)

Из этого уравнения следует, что независимых величин, характеризующих состояние газа в проточной полости, две. В термодинамике для их определения используются два закона:

- закон сохранения энергии;

- закон сохранения массы.

Принимаем допущения о том, что параметры газа являются медленно меняющимися по сравнению с изменением сигналов управления.

Это позволяет разбить уравнение нелинейной нестационарной модели привода на две группы уравнений:

- уравнения с медленно меняющимися координатами;

- уравнения с быстро меняющимися координатами.

Учитывая выше изложенное, применим для описания функционирования привода законы сохранения энергии.

Расчетная схема канала РП представлена на рисунке 1.3.1


Рис 1.3.1 Расчетная схема рулевого привода

Закон сохранения энергии можно записать в следующем виде:

- для полости теплоотборника

; (1.3.2)

- для рабочей полости

;(1.3.3)

- для полости отсека

(1.3.4)

Закон сохранения массы:

-для полости теплоотборника

; (1.3.5)

- для рабочей полости

(1.3.6)

- для полости отсека

(1.3.7)

Удельный приход (расход) энергии находим по зависимостям:

(1.3.8)

Массовый секундный приход (расход) газа в рабочей полости определяется по формулам:


(1.3.10)

Функции режима течения определяются по формулам:

(1.3.11)