Смекни!
smekni.com

Экологические характеристики гетерогенных катализаторов (стр. 2 из 9)

Однако блокировка поверхности может оказаться не единственной причиной дезактивации катализатора. Во многих процессах закоксовывание наблюдается одновременно с отравлением и со спеканием катализатора. Когда поверхность катализатора дезактивируется в результате отравления или блокировки, скорость реакции замедляется из-за того, что посторонние молекулы адсорбируются в порах катализатора и закрывают часть его активной поверхности. В результате сырье должно продиффундировать к недезактивированной части катализатора. Таким образом, дезактивация увеличивает среднее расстояние, на которое диффундирует реагент через пористую структуру [5].

Для цеолитов типа пентасил, термостабильность структуры которых очень велика, вероятнее всего, основной причиной дезактивации является отложение углеродсодержащих соединений на поверхности цеолита.

Схема образования кокса на поверхности цеолита представляет ряд последовательных реакций образования мономеров, уплотнения в результате нерегулярной конденсации и полимеризации с образованием циклов, т.е. связывание мономеров между собой и обеднением водородом вплоть до псевдографитовой структуры. Сам кокс в этом случае является смесью высокомолекулярных продуктов уплотнения, имеющий в своем составе последовательно переходящие друг в друга смолы, асфальтены и собственно кокс [6].

Характеристики коксовых отложений на катализаторе (химический состав, структура, дисперсность и распределение на поверхности) зависят от условий образования и могут изменяться в широких пределах. Заранее предсказать эти характеристики невозможно, их необходимо экспериментально определять в каждом конкретном случае. Полученные сведения открывают определенные возможности воздействия на процесс закокосовывания.

Предметом ряда исследований является выяснение вопроса о том, какие вещества или частицы можно считать предшественниками кокса – олефины или ароматические углеводороды. Большинство авторов полагают, что предшественниками являются ароматические соединения, хотя имеются доказательства в пользу важной роли в коксообразовании олефинов. Дать однозначный ответ на этот вопрос невозможно. Вероятнее всего, образование кокса на поверхности цеолитного катализатора может происходить из ароматических или олефиновых углеводородов через образование алкилароматических углеводородов с последующим превращением в полициклические соединения. При этом коксогенность углеводородов увеличивается с увеличением их молекулярного веса.

Большинство исследователей полагают, что высокая стабильность действия цеолитных катализаторов типа ZSM, обладающих необычными молекулярно-ситовыми свойствами, обусловлена структурными характеристиками, а медленная дезактивация – стерическими затруднениями образования кокса внутри кристаллического каркаса цеолита. Наряду с пространственно-селективными свойствами цеолитов ZSM-5 в процессе коксообразования большую роль играют кислотные центры его поверхности. Отложение кокса приводит к уменьшению силы и количества кислотных центров, что сопровождается снижением каталитической активности [6].

Дезактивация цеолитных катализаторов при закоксовывании может быть химической и химической и физической [7]. Химическая дезактивация является следствием химической адсорбции промежуточных продуктов уплотнения кокса. Такая адсорбция близка к случаям отравления ядами. Если реакции образования кокса протекают на тех же центрах, что и целевая реакция, они могут ее подавлять, т.к. продукты уплотнения иногда хемосорбируются и связываются с активными центрами сильнее, чем компоненты основного реагента.

По мере увеличения числа ядер в полиядерном ароматическом карбониевом ионе делокализация возрастает, что приводит к уменьшению целенаправленной реакционной способности переферийных атомов углерода конденсированной полиядерной системы. В результате постепенно исчезает сильное взаимодействие такой многоатомной системы с поверхностью катализатора, ослабевает химическое отравление продуктами уплотнения. На смену ему выступает физическое экранирование участков катализатора. Происходит закупорка каналов цеолита типа ZSM, сопровождающаяся выводом из строя основной части катализаторной поверхности.

Изучение коксовых отложений, которые образуются на разных катализаторах в условиях, отличающихся режимными параметрами и видом сырья, показывает, что они существенно отличаются по своим характеристикам [8]. Важнейшими из них при рассмотрении закономерностей окислительной регенерации являются химический состав кокса, его структура и дисперсность, а также распределение отложений по грануле катализатора.

1.3 Закоксовывание цеолитов в процессах переработки углеводородов

Исследование дезактивации цеолитов типа пентасил в процессах крекинга углеводородов проводится во многих странах. Полученные данные показывают [9], что в каналах H-ZSM-5 образуется мало углеродистых отложений. Кокс в основном формируется на внешней поверхности кристаллов цеолита и мало влияет на его активность. Закоксовывание H-ZSM-5 приводит к блокировке пор и отравлению кислотных центров. Скорость коксообразования тем выше, чем больше свободное пространство вблизи кислотного центра и чем ниже скорость десорбции продуктов-предшественников кокса. Сравнение спектров, полученных для образцов кокса, со спектрами графита и полиароматических соединений показало, что структура кокса сходна со структурами полиароматических соединений.

По данным [9], полученным при крекинге н-гексана, предшественниками кокса являются образующиеся в процессе олефины, которые подвергаются олигомеризации. В дальнейшем происходит циклизация олигомеров и образование за счет перераспределения водорода моноароматических молекул. Последние подвергаются алкилированию с последующей циклизацией алкильных фрагментов. Полиароматические молекулы (кокс) образуются в результате реакций перераспределения водорода.

В работе [9] приведены данные по изучению скорости дезактивации цеолита типа H-ZSM-5 и природа образующихся углеродистых отложений в зависимости от силикатного модуля цеолита, содержания модификатора и температуры реакции. В качестве модельной реакции использовали превращение гексена-1 в статической циклической системе в интервале температуры 398-523 К. Цеолиты с повышенным содержанием алюминия в решетке обладают не только повышенной активностью в начальный период процесса, но также замедленной дезактивацией, несмотря на более интенсивное углеобразование. Отложения, образующиеся при пониженных температурах в основном представляют собой насыщенные углеводороды. С увеличением соотношения Si/Al и времени контакта реагентов количество углерода в отложениях несколько увеличивается, причем с повышением температуры, и особенно в присутствии водяного пара эффект становится более явным.

Медленный линейный рост выхода кокса связан с низкой глубиной превращения н-гексана и небольшим количеством образующихся ароматических соединений, превращающихся в кокс. Здесь же методами ЭПР, рентгенографии, РЭС и ТПД-NH3 изучено влияние высокотемпературной обработки цеолита ZSM-5 парами TiCl4 на его каталитические свойства в реакции крекинга кумола и образование кокса. Обнаружено, что титан входит в решетку цеолита. С увеличением содержания титана уменьшается количество сильных кислотных центров и активность цеолита снижается. Но одновременно уменьшается коксообразование.

На свойства алюмосиликатных катализаторов сильно влияют накапливающиеся в них металлы. Отравление катализатора металлами может быть двух типов. Щелочные металлы нейтрализуют кислые центры катализатора и снижают в результате число работающих активных центров. Активность катализатора при этом снижается, но селективность остается неизменной. Отравление никелем, ванадием, железом, медью, свинцом мало влияет на кислотную активность катализатора, но приводит наряду с протеканием обычных реакций каталитического крекинга к катализу распада углеводородов на элементы, что резко увеличивает выход водорода и кокса. В наибольшей степени распад на элементы катализируют никель, кобальт и медь. Обычно сырье каталитического крекинга содержит железо, ванадий и никель. Отравляющее действие ванадия примерно в 4, а никеля — в 14 раз выше, чем железа. Помимо увеличения образования водорода и кокса, тяжелые металлы ускоряют спекание пор катализатора. Влияние отложения металлов на поверхности катализатора очень велико. Так, при повышении массового содержания никеля в катализаторе от 0,010 до 0,017% для сохранения выхода кокса оказалось необходимым понизить глубину крекинга в такой степени, что объемный выход бензина снизился с 48,9 до 43,9 % на сырье; при этом выход водорода повысился в 6 раз [9].

Важной особенностью пентасилов, отличающей их от других цеолитов, является высокая стабильность каталитической активности при проведении высокотемпературной ароматизации, т.е. очень слабое влияние образующегося кокса на каталитическую активность цеолита. Возникающие в процессе ароматизации или введенные в цеолит путем предварительной адсорбции ароматические молекулы не образуют в каналах цеолитов этого типа (в отличие от НМ) продуктов уплотнения как в ходе реакции, так и при последующей термообработке. Однако на внешней поверхности пентасила существуют центры, катализирующие образование слабо графитированных продуктов уплотнения [10,11]. Отсутствие кокса внутри каналов пентасила подтверждается следующими данными [10]:

-стабильной активностью НЦВК при высокотемпературной ароматизации олефинов;

-сохранением исходной ароматизирующей активности у образца, отравленного 2,4,6-триметилпиридином и содержащего адсорбированный п-ксилол, после термической обработки на воздухе при температуре 300 0С;