Смекни!
smekni.com

Экологические характеристики гетерогенных катализаторов (стр. 4 из 9)

Ранние работы по регенерации зерен относились в основном к изотермической задаче и заключались в оценке времени, требующегося для полного удаления всего кокса из зерна. В одной из них были определены два четко различающихся периода по скорости процесса: период постоянной и период падающей скорости. Первый соответствовал выжиганию кокса на поверхности. Период падающей скорости относится к выжиганию кокса внутри зерна; профили концентрации кислорода были получены также и для этого случая, но выражение для скорости в этом периоде является сложной функцией доли оставшегося кислорода.

1.6 Изменения структуры катализатора в процессе его регенерации.

Со временем катализаторы стареют, что проявляется в снижении каталитической активности. Старение катализаторов обычно вызывается рекристаллизацией и связанными с ними изменениями структуры поверхности.

Во многих случаях дезактивация наступает по другим причинам. Например, поверхность катализатора может покрываться пленкой смолообразных веществ и отложений угля в результате побочных реакций, в данном случае утомленным катализаторам регенерацией можно вернуть полностью или частично их исходную активность.

Методы регенерации очень разнообразны и специфичны для отдельных катализаторов. Такие термически стабильные катализаторы, как Al2О3,. Th02, ZnO, Cr2O3, алюмосиликаты и т. д., регенерируются прокаливанием в токе воздуха или кислорода для выжигания из них посторонних веществ, содержащих углерод. Регенерацию катализаторов следует вести при строго контролируемой температуре, так как в противном случае они могут потерять часть своей активности из-за укрупнения кристаллов в результате перегрева. Во избежании опасного повышения температуры часто необходимо разбавлять газы азотом или парами воды. Никелевые и кобальтовые катализаторы регенерируют окислительно-восстановительным методом, который заключается в осторожном окислении катализатора воздухом с последующим восстановлением образующихся окислов.

Алюмосиликатые катализаторы для каталитического крекинга, теряющие через 10 минут свою активность из-за отложения в них кокса, полностью регенерируют горячим воздухом. Активные медные катализаторы регенерируют повторным пропусканием водорода при 180-200°С.

Существуют и другие методы регенерации: экстракция растворителями, протравление поверхности катализаторов кислотами или щелочами, переосаждение и т. п. [39].

Цеолитсодержащие катализаторы в основном для восстановления их активности подвергают окислительной регенерации. Целевое назначение процесса окислительной регенерации - удаление кокса без ухудшения свойств катализатора. На практике достичь этого не удается, так как окислительная среда, присутствие в газе паров воды и интенсивное выделение тепла при горении кокса оказывают определенное воздействие на катализатор. В ряде случаев изменения незначительны, однако нередко активность и селективность свежего и регенерированного катализаторов различаются существенно [16]. Это происходит из-за изменения химического состава катализаторов, сопровождающегося изменением удельной активности, и вследствие структурных и других превращений, приводящих к изменению удельной поверхности или ее доступности.

При обсуждении вероятного механизма окисления кокса на катализаторах отмечалось, что последние могут служить переносчиком кислорода из газовой фазы к коксу по стадийному механизму. И если лимитирующей стадией является присоединение кислорода к катализатору, он существует в начальные моменты окислительной регенерации в восстановленной форме. Окисление компонентов катализатора в этом случае может протекать в основном после выжига кокса и затрагивать только поверхность катализатора. Если же лимитирующей стадией является передача кислорода коксу от катализатора, последний будет быстро окисляться. При этом окислению, по-видимому, будут подвергаться не только поверхностные слои, но и объем катализатора. Получающийся при регенерации оксид активного компонента катализатора в определенных условиях может взаимодействовать с носителем с образованием соединений, не обладающих каталитической активностью.

Промышленные катализаторы, как правило, представляют собой системы, по многим параметрам далекие от термодинамического равновесия. Это обусловлено развитой поверхностью и наличием микроискажений решетки кристаллов. При низких температурах неравновесное состояние высокодисперсной структуры может сохраняться весьма длительное время. С повышением температуры увеличивается подвижность элементов структуры твердого тела, и система стремится перейти в более устойчивое состояние. Поэтому практически все промышленные катализаторы в процессе эксплуатации (особенно на стадии регенерации) постепенно претерпевают структурные изменения. В большинстве случаев уменьшается удельная поверхность, происходит перераспределение объема пор по радиусам, и чаще всего размер пор возрастает, а общая пористость катализаторов уменьшается. Необходимо отметить, что для сложных катализаторов кроме изменения структуры в объеме гранул возможно изменение соотношения площадей поверхности (дисперсности) различных фаз [21].

Изменения пористой структуры и поверхности обусловливаются двумя процессами: кристаллизацией и спеканием. При кристаллизации катализаторов имеет место рост кристаллов и упорядочение всей структуры с устранением дефектов и других искажений в решетке кристаллов. В результате исчезают наиболее мелкие частицы, увеличивается размер пор, сокращается удельная поверхность. Однако общий объем пор при этом изменяется незначительно. В процессе кристаллизации формируется относительно стабильная и более однородная структура.

Спекание - это процесс беспорядочного уплотнения системы, сопровождающийся уменьшением удельной поверхности и объема пор. Формирующаяся при спекании структура мало устойчива, она склонна к дальнейшему уплотнению и кристаллизации. Механизмы кристаллизации и спекания различны [21]. Кристаллизация обусловлена преимущественно поверхностной диффузией, а при спекании большую роль играет объемная диффузия, при которой первичные частицы просто срастаются друг с другом. Кристаллизация и упорядочение структуры протекают в области более низких температур, чем спекание.

В отличие от кристаллических пористых тел избыточная свободная энергия аморфных структур определяется лишь величиной удельной поверхности. Поэтому спеканию аморфных тел не предшествуют процессы упорядочения структуры [22].

Для большинства катализаторов переменной активности наибольшее изменение пористой структуры и поверхности наблюдается при окислительной регенерации, так как она проводится при более высоких температурах, чем основной каталитический процесс [21]. Ускорение спекания вызывается перегревом закоксованных частиц или наиболее закоксованных их участков в процессе регенерации. Перегревы могут достигать сотен градусов. При этом наряду со спеканием в некоторых случаях происходит растрескивание катализатора.

Другим фактором, ускоряющим процесс спекания при регенерации, может быть воздействие паров воды при высокой температуре.

Неодинаковое изменение структуры, например, алюмосиликатных катализаторов после прокаливания при высокой температуре и обработки водяным паром отмечалось разными исследователями. Исследование структурных изменений и выявление закономерностей, по которым они протекают в результате прокаливания и обработки паром, было проведено на образце алюмосиликатного катализатора [16]. Показано, что и перегрев до 900 °С на воздухе, и обработка паром при 750 °С приводят к уменьшению поверхности катализаторов и объема пор. Отмечено различное действие термической и паровой обработок на пористую структуру. Так, при перегреве катализатора в воздухе удельная поверхность уменьшается приблизительно пропорционально сокращению объема пор. Размеры пор существенно не меняются. В случае же обработки паром объем пор сокращается значительно медленнее, чем удельная поверхность, при этом размеры пор резко возрастают. При длительном воздействии пара при температуре 750 °С полностью исчезают мелкие поры, катализаторы становятся крупнопористыми. Кроме того, водяной пар ускоряет уменьшение удельной поверхности катализатора.

Представляют интерес и результаты исследований отдельных частиц шарикового катализатора [16, с.56]. Образцы были отобраны из регенераторов промышленных установок. Частицы равновесного катализатора - «черные», «серые» и «белые» шарики одинакового размера (d = = 3-4 мм) существенно отличаются друг от друга. «Белые» шарики - те, с которых кокс полностью выгорел в регенераторе промышленной установки. «Черные» и «серые» содержат кокс во всем объеме частицы, хотя они и прошли через регенератор. Из них были приготовлены пластинки толщиной 0,1-0,2 мм. «Черные» и «серые» пластинки регенерировали в муфельной печи при 700°С. Через каждые 5-10 минут регенерации с помощью микроскопа измеряли границы той части пластинки, которая посветлела в результате регенерации.

«Серые» пластинки весьма неоднородны. Одни из них регенерируются быстро и посветление происходит почти одновременно по всей закоксованной зоне. На других обнаруживаются зоны с разной скоростью удаления кокса. Когда разница в скорости регенерации зон достигает еще большей величины, в некоторый момент времени наблюдается закоксованное кольцо. И, наконец, у части пластинок после первоначального уменьшения диаметра закоксованного ядра границы его стабилизируются и не изменяются длительное время (10 часов). По-видимому, этот кокс вообще не удаляется с катализатора.