Глава 1. Литературный обзор
1.1 Экологические характеристики гетерогенных катализаторов
На сегодняшний день каталитические процессы составляют основную массу деструктивных процессов переработки нефти. Их популярность, помимо многих других факторов, обусловлена снижением экологической нагрузки при проведении каталитических процессов переработки углеводородных систем по сравнению с термическими процессами. Необходимость увеличения глубины переработки нефти в России с целью увеличения выхода светлых фракций, и в частности, автомобильных бензинов, обусловливает создание новых мощностей по производству моторных топлив.
В Западной Европе ужесточение экологических требований к качеству потребляемых автопромом бензинов произошло около 15 лет назад. В России переход на международные стандарты пытаются осуществить в настоящее время, однако наблюдается острая нехватка в качественных высокооктановых моторных топливах. Сроки введения экологических нормативов на выбросы автомобилями приведены в таблице 1 [1].
Таблица 1- Сроки введения экологических нормативов на выбросы автомобилями и требований к качеству бензинов
Норма | Легковые автомобили | Автомобильный бензин | |||
Западная Европа | Россия | Западная Европа | Россия: требования | ||
Тех.регламента | Нормативной документации | ||||
Евро-2 | 1996 | 22 апреля 2006г. | 1994 EN 228:1993 | До 31.12 2008г. | 1997г. ГОСТ Р 51105 |
Евро-3 | 2000 | 1 января 2008г. | 2000 ЕN 228:1999 | 1 января 2009г. | 2002 г. ГОСТ Р 51866 |
Евро-4 | 2005 | 1 января 2010г. | 2005 ЕN 228:2004 | 1 января 2010г. | 2005 г. ТУ 38.401-58-350-2005 |
Евро-5 | 2009 | 1 января 2014г. | 2009 ЕN 228:2004 | 1 января 2013г. | 2007г. Изм.1 к ГОСТ Р 51866 |
Изменение № к Тех. Регламенту: Евро-2 до 31 декабря 2009 г.; Евро-3 с 1 января 2010 г.; Евро-4 с 1 января 2012 г.; Евро-5 с 1 января 2015 г.
Основные требования к качеству автомобильных бензинов, выпускаемых в оборот и находящихся в обороте, на период до 2015 года определены специальным техническим регламентом (ТР) [2], принятым Правительством РФ 27 февраля 2008 г. (табл.1). В сентябре указанный регламент должен был вступить в силу, но этого не произошло. В таблице 2 представлены требования технического регламента к качеству автомобильных бензинов.
Таблица 2 - Требования к характеристикам автомобильного бензина
Характеристики автомобильного бензина | Нормы в отношении | |||
класса 2 | класса 3 | класса 4 | класса 5 | |
Массовая доля серы, мг/кг, не более | 500 | 150 | 50 | 10 |
Объемная доля бензола, %, не более | 5 | 1 | 1 | 1 |
Концентрация железа, мг/дм3, не более | отсутствие | отсутствие | отсутствие | отсутствие |
Концентрация марганца, мг/дм3, не более | отсутствие | отсутствие | отсутствие | отсутствие |
Концентрация свинца, мг/дм3, не более | отсутствие | отсутствие | отсутствие | отсутствие |
Массовая доля кислорода, %, не более | - | 2,7 | 2,7 | 2,7 |
Объемная доля углеводородов, %, не более: | ||||
ароматических | - | 42 | 35 | 35 |
олефиновых | - | 18 | 18 | 18 |
Октановое число: | ||||
по исследовательскому методу, не менее | 92 | 95 | 95 | 95 |
по моторному методу, не менее | 83 | 85 | 85 | 85 |
Требования достаточно жесткие, и обеспечить их соответствие на сегодняшний день могут лишь не многие нефтеперерабатывающие предприятия России [3]. Только использование процессов алкилирования и изомеризации для производства бензинов может улучшить их качество до требуемых нормативов. Поэтому строительство этих установок в составе Российских НПЗ является гарантом получения моторного топлива, соответствующего международным стандартом.
Одной из причин, по которой Российские нефтеперерабатывающие предприятия не спешат строить новые установки для получения качественного высокооктанового топлива, являются неизбежные первоначальные капитальные затраты на закупку технологического оборудования. Зарубежные технологии дороги, отечественные не многочисленны и не всегда безупречны. В этих технологиях одним из ключевых звеньев, влияющим как на технологические параметры процесса (температуру, давление, расход реагентов, и как следствие - на капитальные затраты), так и на экологические показатели процесса (состав получаемых продуктов и количество токсичных выбросов), является грамотный подбор катализаторов.
Современные катализаторы глубокой переработки нефти должны отвечать следующим основным требованиям: активностью и селективностью по отношению к проводимому процессу, достаточной механической прочностью, доступностью, приемлемой стоимостью, большим сроком службы. Именно срок службы катализаторов зачастую определяет, будет ли катализатор внедрен в промышленное использование, или сможет эксплуатироваться лишь в масштабах лаборатории.
Не на последнем месте среди критериев отбора промышленных катализаторов находятся такие их свойства, как способность к регенерации и параметры этого процесса. Ведь сложности в осуществлении регенерации, повышенные энергетические затраты, большая продолжительность, наличие токсичных веществ в составе газов, отходящих из регенератора – все эти факторы влияют не только на экономические затраты, но и, прежде всего, на экологические показатели процесса.
1.2 Причины потери активности цеолитсодержащих катализаторов
в ходе эксплуатации
В настоящее время, подавляющее большинство термокаталитических процессов нефтепереработки (около 90 %) основано на использовании гетерогенных катализаторов. Цеолитсодержащие катализаторы являются наиболее универсальными и перспективными из используемых контактов.
В процессе эксплуатации цеолиты, как и другие катализаторы процессов нефтепереработки и нефтехимии, постепенно теряют свою начальную активность. Время, в течение которого активность снижается до столь низкого уровня, что требуется замена катализатора или его регенерация, определяется типом процесса и условиями его проведения.
Правильно подобранные параметры процесса регенерации позволяют увеличить общий срок службы катализаторов, что позволяет снизить количество твердых токсичных отходов в виде отработанных контактов, скапливающихся на территории НПЗ и требующих утилизации. Помимо непосредственно вышедшего из строя катализатора, не малую антропогенную нагрузку на экосистемы прилежащих к предприятию территорий оказывает состав газов регенерации катализаторов, т.к. в их состав могут входить токсичные компоненты (CO, в малых количествах - окислы серы и азота).
Рентабельность новых процессов в значительной степени зависит от разработки наиболее дешевого и эффективного способа регенерации катализатора. Поэтому большое внимание исследователей уделяется выявлению причин дезактивации цеолитных катализаторов, поиску путей увеличения продолжительности работы катализаторов, технологии их регенерации [4]. Последняя является нестационарным процессом, и от условий ее проведения зависит, улучшатся или ухудшатся свойства катализатора после регенерации.
Процессы дезактивации катализаторов могут быть сведены к трем основным группам [5]: спекание (термическая дезактивация), отравление и блокировка. В процессах нефтепереработки катализатор дезактивируется в основном в результате блокировки активных центров коксовыми отложениями.
Дезактивация катализаторов блокировкой в отличие от дезактивации в результате отравления обычно является следствием отложения на их поверхности больших количеств коксогенов (чаще всего представляющих собой конденсированные ароматические или гибридные углеводороды, иногда с примесью металлоорганических соединений). Их масса может составлять 10-20 % от массы катализатора. В основном наблюдается два механизма блокировки.
Первый тип блокировки, в котором кокс образуется при определенных условиях в среде углеводородов. Поскольку эти отложения накапливаются вследствие протекания реакций крекинга и уплотнения исходных веществ, промежуточных и конечных продуктов, их полное устранение невозможно. Такой вид дезактивации можно минимизировать подбором технологических условий проведения процесса. При втором типе блокировки образуются отложения металлов в процессе переработки нефти (он встречается гораздо реже).
В некоторых случаях количество образуемого кокса может быть уменьшено путем введения в состав катализатора модифицирующих добавок.
Образование кокса, содержащего кроме углерода значительное количество водорода, а также следы серы, кислорода и азота, является наиболее распространенным механизмом блокировки поверхности катализаторов.