Смекни!
smekni.com

Принципы проектирования электроэнергетической системы и сети (стр. 7 из 10)

Для поддержания заданных границ рентабельности при выбранном сечении провода и средневзвешенном тарифе на электроэнергию, оптимальная длина линии должна находиться в пределах L1 =< LОПТ=< L2. Так, задавая границы рентабельности в диапазоне от 0,437 до 0,9 и решая это неравенство относительно L, получаем, рис 10.1:


L, км

Рис.10.1. Рентабельные длины электропередач ВЛ-110 кВ.

Для выбора экономически обоснованных сечений проводников воздушных линий электропередачи использованы суммарные дисконтированные затраты ЗД за расчётный период для случая, когда капитальные затраты производятся в 1 год, ликвидная стоимость равна нулю, а технико-экономические показатели (объём производства, цены, эксплуатационные издержки) неизменны в течении всего жизненного цикла в расчёте на 1 км:

, (3)

где роб, рем – отчисления на ремонт и обслуживание линии электропередачи.

По формуле (3) строятся серии пересекающихся кривых для стандартных сечений, Точки пересечения этих кривых определяют граничные значения тока, при которых целесообразен переход от одного сечения к другому, рис.10.2. Так как величина и положение оптимальных токовых интервалов зависят от

, то для выбора сечений проводов предлагается для всех пар двух смежных стандартных сечений проводов построить кривые IЭК=f(
), каждая из которых представляет собой границу, разделяющую области ЗД, руб.

Рис.10.2. Токовые интервалы для оптимальных сечений ВЛ-110 кВ.

Применение проводов этих смежных сечений. Таким образом, для любого

выделяются т.н. обобщённые оптимальные токовые интервалы, расположенные между соответствующими кривыми, рис 10.3.

Рис.10.3. Диаграмма для выбора оптимальных сечений проводов ВЛ-110 кВ.


Анализ полученных результатов показывает экономическую целесообразность применения для ВЛ-110 кВ ограниченной номенклатуры сечений проводов: стандартов АС-120, АС-150 и АС-240.

Одним из основных критериев эффективности инвестиций в сооружение ВЛ служит условие превышения внутренней нормы доходности ЕВН (ВНД) над средней величиной норматива дисконтирования ЕВН>ЕСР. В случае если вложения производятся с целью экономии текущих затрат, то минимальное значение ВНД должно превышать ЕСР и составлять не менее 0,15. как показывают расчёты, для линий 110-220 кВ традиционного исполнения значения ВНД находятся в пределах от 0,457 до 0,92, то есть требования критерия по ЕВН. выполняются.

Конструкция и сечение фазы воздушной линии электропередачи должна удовлетворять трём основным требованиям:

- ограничение радиопомех и потерь на корону по величине напряженности электрического поля на поверхности проводов –

;

- передача энергии при оптимальной плотности тока JОПТ, обеспечивающей минимальные затраты на сооружение и эксплуатацию линии.

- обеспечение максимальной степени использования поверхности проводов по величине коэффициента использования – kИСП

kИСП МАКС.

Согласно исследованиям, проведенным в НИИПТ, ЕДОП = 0,8ЕН, где ЕН – начальная напряжённость коронного разряда на проводе. Действующее значение ЕН определяется формулой:

, (4)

здесь

- относительная плотность воздуха,
– радиус провода.

Значения допустимой напряжённости поля по условию радиопомех вычисляется по формуле:

EДОП= 100´ [32,2 – 17,4lg(R0)], (5)

В качестве допустимой принимается наименьшая величина, определенная из формул (4) и (5).

Коэффициент использования поверхности kИСП проводов для ВЛ 220 кВ, обеспечивается на уровне 0,83–0,99 путём оптимизации конструкции фаз и сечения проводов. На линиях с номинальным напряжением 110 кВ kИСП значительно ниже и составляет 0,51 – 0,69, так как невозможно получить максимальную напряжённость на поверхности проводов близкую к EДОП.

Уточнённые границы экономических интервалов и реальные значения плотности тока в проводах ВЛ 220 кВ, полученные с учётом потерь на корону, находятся в пределах от 0,625¸0,825 А/мм2 (для провода АС-400) и до 1,253¸2 А/мм2 (для провода АС-300) Варьирование Е в пределах от 0,1 до 0,7 не оказывает существенного влияния на изменение величины приведенных затрат, что позволяет нам условно принять в качестве Е какую-либо усреднённую величину.

На основе трех перечисленных требований Г.Н. Александров получил формулу связи оптимального сечения провода с конструктивными и режимными параметрами электропередачи:

, (6)

где PН– натуральная мощность линии, cЗ – коэффициент заполнения провода.

На основе использования формул (4 – 6) рассчитана оптимизированная шкала стандартных сечений проводов ВЛ 110–220 кВ, приведенная в таблице 10.1.

Таблица 10.1. Стандартные и оптимизированные сечения проводов

Номинальное напряжение ВЛ, кВ Стандартные сечения / оптимизированные сечения, мм2/мм2
110 120/115 150/140 185/175 240/225
220 240/225 300/280 400/370 500/460 600/555

Как следует из таблицы, существующие стандартные сечения проводов ВЛ 110 – 220 кВ отличаются от полученных оптимизированных сечений не более, чем на 8%. Токовые нагрузки, при которых экономически целесообразно применение оптимизированных сечений, отличаются от оптимальных токовых нагрузок реально существующих сечений в этих же пределах. Таким образом, полученные результаты не подтверждают предложение ряда специалистов по пересмотру стандартной шкалы сечений проводов при существующей тарифной политике.

При уменьшении отношения P/PН уменьшается потребляемая линией реактивная мощность:

,

где l - волновая длина линии.

Потребляемая линией реактивная мощность должна быть возмещена энергосистемой. В связи с этим необходимо решить, что выгоднее – передавать по линии мощность превышающую натуральную, и компенсировать потребляемую линией реактивную мощность соответствующими источниками реактивной мощности (ИРМ), либо, путем расщепления фаз и сокращения междуфазного расстояния, увеличить натуральную мощность линии до уровня передаваемой и отказаться от ИРМ. Для этого вычисляется отношение приведенных затрат на сооружение и эксплуатацию ИРМ ЗИРМ к приращению затрат на увеличение натуральной мощности линии DЗВЛ:

=
,

где роб, рвл – отчисления на обслуживание соответственно ИРМ и ВЛ.

Как следует из проведенных расчётов

=
, рис 4, для ВЛ-220 кВ уже при P/Pн >0,6 отношение
. Таким образом, подтверждается справедливость предположения Г.Н. Александрова для ВЛ-220кВ об экономической целесообразности передачи энергии в натуральном (либо донатуральном) режиме по сравнению с созданием в энергосистеме дополнительных источники реактивной мощности для компенсации её потребления линия

Себестоимость транспорта электроэнергии SТР по ВЛ традиционного исполнения с учетом устанавливаемых на подстанциях ИРМ определяется отношением издержек И к количеству переданной электроэнергии Э

. (7)

Минимуму себестоимости отвечает токовая нагрузка

,

откуда следует, что мероприятиями, воздействующими на величину I, могут быть: применение дифференцированных тарифов, перераспределение электрических нагрузок.


Рис.10.4. Относительная эффективность электропередач.


Применение ИРМ. Использование ВЛ повышенной натуральной мощности может привести к отказу от ИРМ. Тогда определение себестоимости передачи электроэнергии по линии повышенной натуральной мощности SПНМ может производиться по формуле (7) с учетом только первых двух слагаемых в правой ее части. Расчеты зависимостей SТР/SПНМ= f(I) показывают, что, несмотря на некоторое увеличение (до 7,5%) удельных капиталовложений в линию при передаче по линии мощности P>PН, себестоимость передачи электроэнергии по традиционным ВЛ-220 кВ, сооружаемых с учётом компенсирующих устройств, значительно выше себестоимости передачи электроэнергии в сравнении с ВЛ-220 кВ повышенной натуральной мощности.