Смекни!
smekni.com

А.А. Ивин Теория аргументации (стр. 8 из 10)

Дедуктивное рассуждение служит также для верификации (косвен­ного подтверждения) утверждений: из проверяемого положения дедук­тивно выводятся его эмпирические следствия; подтверждение этих следствий оценивается как возможный довод в пользу исходного по­ложения.

Дедуктивное рассуждение может использоваться также для фальси­фикации гипотез. В этом случае демонстрируется, что вытекающие из гипотез следствия являются ложными. Не достигшая успеха фальси­фикация представляет собой ослабленный вариант верификации: неудача в опровержении эмпирических следствий проверяемой гипотезы служит аргументом, хотя и весьма слабым, в поддержку этой гипотезы.

И наконец, дедукция используется для систематизации теории, про­слеживания логических связей входящих в нее утверждений, постро­ения объяснений, опирающихся на общие принципы, предлагаемые теорией. Как будет ясно из дальнейшего, прояснение логической структуры теории, укрепление ее эмпирической базы и выявление ее общих предпосылок составляют заметный вклад в обоснование входя­щих в теорию утверждений.

Дедуктивная аргументация применима во всех областях рассужде­ния и в любой аудитории.

Удельный вес дедуктивной аргументации в разных областях знания существенно различен. Так, она очень широко используется в матема­тике и математической физике и эпизодически — в истории или фи­лософии.

В зависимости от того, насколько широко применяется дедуктив­ная аргументация, все науки принято делить на дедуктивные и индук­тивные. В дедуктивных науках используется по преимуществу или даже единственно дедуктивная аргументация. В индуктивных такая аргумен­тация играет лишь заведомо вспомогательную роль, а на первом месте стоит эмпирическая аргументация, имеющая индуктивный, вероят­ностный характер. Типично дедуктивной наукой считается математи­ка, образцом индуктивных наук являются естественные науки.

Деление наук на дедуктивные и индуктивные, широко распростра­ненное еще несколько десятилетий назад, сейчас во многом утратило свое былое значение. Оно ориентировано на науку, рассматриваемую в статике, прежде всего как систему надежно установленных истин..

Неясность и неточность понятия доказательства. Понятие дедукции является общеметодологическим. В логике ему соответствует понятие доказательства.

Доказательство обычно определяется как процедура обоснования ис­тинности некоторого утверждения путем приведения тех истинных ут­верждений, из которых оно логически следует.

Приведенное определение включает два центральных понятия ло­гики: истина и логическое следование. Эти понятия нельзя назвать в достаточной мере ясными, и, значит, определяемое через них понятие доказательства также не может быть отнесено к ясным.

Многие наши утверждения не являются ни истинными, ни ложны­ми, лежат вне «категории истины»: требования, предостережения и т.п. Они указывают, какой данная ситуация должна стать, в каком направ­лении ее нужно преобразовать. Если от описаний мы вправе требовать, чтобы они были истинными, то удачный приказ, совет и т.д. мы характеризуем как эффективный или целесообразный, но не как истин­ный.

В стандартном определении доказательства используется понятие истины. Доказать некоторый тезис — значит логически вывести его из других, являющихся истинными положений. Но есть утверждения, не связанные с истиной. Очевидно также, что, оперируя ими, нужно быть и логичным, и доказательным.

В связи с этим встает вопрос о существенном расширении понятия доказательства: оно должно охватывать не только описания, но и ут­верждения типа оценок и норм. Но задача переопределения доказа­тельства пока не решена ни логикой оценок, ни логикой норм, и по­нятие доказательства остается не вполне ясным по своему смыслу'.

Отметим далее, что не существует единого понятия логического следования.

Это понятие определяется через закон логики: из утверждения (или системы утверждений) А логически следует утверждение В в том и толь­ко в том случае, когда выражение «если А, то В» представляет собой закон логики.

Данное определение — только общая схема бесконечного множе­ства возможных определений. Конкретные определения логического следования получаются из нее путем указания логической системы, задающей понятие логического закона. Логических же систем, пре­тендующих на статус закона логики, в принципе бесконечно много.

Образцом доказательства, которому в той или иной мере стремятся следовать во всех науках, является математическое доказатель­ство. «Нигде нет настоящих доказательств, — писал Б. Паскаль, — кроме как в науке геометров и там, где ей подражают» (под «геомет­рией» Паскаль имел "в виду, как это было обычным в его время, всю математику).

Содержание понятия доказательства не является в достаточной мере определенным, круг тех рассуждений, которые можно назвать доказательствами, не имеет сколько-нибудь четко очерченной границы. Это означает, что понятие «доказательство» является одновременно и неясным, и неточным. В этом плане оно подобно таким понятиям, как «язык», «игра», «пейзаж» и т.д.

§ 2. Системная аргументация

Сущность системной аргументации.

Системная аргументация — обоснование утверждения путем вклю­чения его в качестве составного элемента в кажущуюся хорошо обосно­ванной систему утверждений, или теорию.

Подтверждение следствий, вытекающих из теории, одновременно подкрепляет саму теорию. С другой стороны, теория сообщает выдви­нутым на ее основе положениям определенные импульсы и силу и тем самым содействует их обоснованию. Утверждение, ставшее элементом теории, опирается уже не только на отдельные факты, но во многом также на широкий круг явлений, объясняемых теорией, на предсказа­ние ею новых, ранее неизвестных эффектов, на связи ее с другими теориями и т.д. Анализируемое положение, включенное в теорию, по­лучает ту эмпирическую и теоретическую поддержку, какой обладает теория в целом.

Ограниченность сомнения. Сомнение, касается не изолированного предложения, но всегда некоторой ситуа­ции, в которой я веду себя определенным образом.

Согласно Витгенштейну, эмпирические предложения могут быть в некоторых ситуациях проверены и подтверждены в опыте. Но есть си­туации, когда они, будучи включены в систему утверждений, в кон­кретную практику, не проверяются и сами используются как основание для проверки других предложений. Так обстоит дело в рассмотренном выше примере. «Меня зовут Б.П.» — эмпирическое предложение, ис­пользуемое как основание для проверки утверждения «Все письма ад­ресованы мне». Однако можно придумать такую историю («практику»), когда мне придется на базе других данных и свидетельств проверять, зовусь ли я Б.П. В обоих случаях статус эмпирического предложения зависит от контекста, от той системы утверждений, элементом которой оно является. Вне контекста бессмысленно спрашивать, является ли данное предложение эмпирически проверяемым или я его твердо при­держиваюсь.

Помимо эмпирических Витгенштейн выделяет методологические предложения. Они тоже случайны в том смысле, что их отрицание не будет логическим противоречием. Однако они не являются проверяе­мыми ни в каком контексте. Внешнее сходство может запутать нас и побудить относиться одинаково к эмпирическими предложениям типа «Существуют рыжие собаки» и методологическим типа «Существуют физические объекты». Но дело в том, что мы не можем вообразить ситуацию, в которой мы могли бы убедиться в ложности методологи­ческого предложения. Это зависит уже не от контекста, а от совокуп­ности всего воображаемого опыта.

Витгенштейн выделяет еще два вида предложений: предложения, в которых я едва ли могу сомневаться, и предложения, которые трудно классифицировать (например, утверждение, что я никогда не был в другой Солнечной системе).

Утверждения, в которых невозможно сомневаться. В свое время Р. Декарт настаивал на необходимости возможно более полного и ра­дикального сомнения. Согласно Декарту, вполне достоверно лишь его знаменитое cogito — положение «Я мыслю, следовательно, существую». Витгенштейн придерживается противоположной позиции: для сомне­ний нужны веские основания, более того, есть категории утверждений, в приемлемости которых мы не должны сомневаться никогда. Выде­ление этих категорий утверждений непосредственно обусловлено сис­темным характером человеческого знания, его внутренней целостнос­тью и единством.

Связь обосновываемого утверждения с той системой утверждений, в рамках которой оно выдвигается и функционирует, существенным образом влияет на эмпирическую проверяемость этого утверждения и, соответственно, на ту аргументацию, которая может быть выдвинута в его поддержку. В контексте своей системы («языковой игры», «прак­тики») утверждение может приниматься в качестве несомненного, не подлежащего критике и не требующего обоснования по меньшей мере в двух случаях.

Во-первых, если отбрасывание этого утверждения означает отказ от определенной практики, от той целостной системы утвержде­ний, неотъемлемым составным элементом которой оно является.

Во-вторых, утверждение должно приниматься в качестве несо­мненного, если в рамках соответствующей системы утверждений оно стало стандартом оценки иных ее утверждений и в силу этого утратило свою эмпирическую проверяемость. Среди таких утверждений, перешедших из разряда описаний в разряд ценностей, можно выделить два типа:

1) утверждения, не проверяемые в рамках определенной, достаточ­но узкой практики,

Например, об имени человека, просматривающего почту: пока он занят этой деятельностью, он не может сомневаться в своем имени;

2) утверждения, не проверяемые в рамках любой, сколь угодно ши­рокой практики,

Например, «Су­ществуют физические объекты», «Я не могу ошибаться в том, что у меня есть рука» и т.п.