Смекни!
smekni.com

Психофизиология как наука (стр. 17 из 21)

Префронтальная кора и области, с которыми она активно связана (гиппокамп, нижняя часть теменной коры, таламус) характеризуется высокой метаболической активностью при выполнении теста с отсроченным воспроизведением. Метаболическая активность мозга имеет разный характер в зависимости от того, требует ли задание от животного памяти о местоположении предметов или об их признаках.

Показано, что при требовании в эксперименте запоминать ряд слов или произносить глагол, ассоциативно связанный с высвеченным на экране существительным, отмечалось усиление работы нейронов префронтальной коры.

По-видимому, префронтальная кора разделена на множество "участков памяти", каждый из которых специализируется на кодировании особого рода информации, например, информации о местоположении, отдельных признаках объектов, таких как цвет, размеры, форма, а у людей еще и семантических и математических знаний.

Эти нейроны также выполняют функцию возбуждения или торможения других структур мозга. Клетки каждого слоя коры образуют в мозге строго специфические системы связей. Клетки одного типа, находящиеся в пятом слое коры, проецируются в области мозга, располагающиеся под корой - в хвостатое ядро и скорлупу, и верхние бугры четверохолмия. Нейроны шестого слоя проецируются в таламус, через который к

коре проходят сенсорные сигналы с периферии мозга.

Префронтальная кора не может самостоятельно инициировать двигательные ответы, однако она контролирует движение, программируя, облегчая или подавляя команды тем мозговым структурам, которые управляют сокращением или расслаблением мышц.

Поиск структур, ответственных за долговременное

хранение информации

Первые попытки найти области мозга, связанные с хранением информации, были безрезультатными. Подытоживая эти исследования, Leshley предложил 2 принципа, объясняющих взаимосвязь обучения и мозга. Принцип массы гласил, что мозг в процессе обучения действует как целое, так что, чем больше его масса, тем эффективнее обучение. Принцип эквипотенциальности утверждал, что различные части мозга почти равны по вкладу в обучение. Этими принципами он обобщил свои исследования, в которых обучал крыс, а затем тестировал результаты после удаления тех или иных участков мозговой ткани.

Однако, нейрохирург У. Пенфилд опроверг эти принципы. Несколько позднее Б. Милнер исследовал больного с удаленными гиппокампами, оперированного по поводу тяжелой эпилепсии. После операции число припадков у него уменьшилось, а коэффициент интеллекта даже увеличился. В тоже время у больного возникла ретроградная амнезия, проявляющаяся в том, что он не помнил события своей жизни, происходившие за 1-3 года до операции. Кроме этого, у него возникла антероградная амнезия, то есть он перестал запоминать любую новую информацию. Отсутствие памяти проявлялось в том, что больной не мог запомнить персонала больницы, дорогу в душ, постоянно читал один и тот же журнал. После смены квартиры он так и не смог запомнить дорогу к новой и постоянно возвращался на прежнее место жительства.

Через восемь лет больной, исследованный Б. Милнер, смог запомнить дорогу из одной комнаты в другую, но не помнил путь домой более, чем за 2 квартала. В 1980 г. его перевели в дом престарелых. Через 4 года он не помнил, где он жил и кто о нем заботился. Помнил только несколько фрагментов жизни 1953 года. Свой возраст помнил лишь до момента операции.

Стойкая антероградная амнезия называется также синдромом Корсакова, который обнаружил и описал его у больных алкоголизмом. У них этот синдром возникает как следствие недостаточности тиамина (витамина В1). Нехватка его ведет к утрате или повреждению нейронов дорзомедиальных ядер таламуса и мамиллярных тел. У больных алкоголизмом этот синдром возникает из-за отсутствия достаточного количества еды на фоне больших концентраций алкоголя в крови. Заболевание проявляется в том, что больные не помнят, сидя за столом, поели ли они уже или только что пришли и надо начинать есть. Страдает также и префронтальная кора, в которой есть проекции дорзомедиального ядра таламуса.

Можно предположить, что синдром Корсакова демонстрирует нарушение процесса консолидации памяти. Показано, что больные с синдромом Корсакова тем не менее могут обучаться новым моторным навыкам, особенно в тех случаях, в которых нет необходимости в осознании обучения. У больных выявлены такие виды обучения как привыкание, сенситизация, классические рефлексы. На основании этих результатов было высказано предположение о необходимости деления памяти на 2 вида: осознанную, эксплицитную и неосознанную, имплицитную. Более ранние названия

для этих видов памяти - декларативная и процедурная.

Особенности формирования эксплицитной памяти

Уже отмечалось, что долговременная память в настоящее время делится на эксплицитную и имплицитную памяти, в зависимости от участия сознания в процессе запоминания информации. Предполагается, что информация в эксплицитной памяти может храниться бесконечно долго, тогда как следы имплицитной памяти склонны угасать при отсутствии использования. Есть основание считать, что имплицитная память раньше возникла в эволюционном развитии по сравнению с эксплицитной памятью.

Эксплицитная память (от английского слова "explicite", что в переводе на русский язык обозначает "ясный, осознанный")- связана с быстрым, осознанным обучением. Ранее этот вид памяти также называли эпизодической. С ее помощью человек различает знакомое и незнакомое события. Многочисленные исследования подтвердили, что структуры, обеспечивающие функционирование этого типа памяти, находятся в височных областях мозга.

В 1949г. Д. Хебб (Hebb, 1949) сформулировал теоретически возможный механизм хранения информации. С его точки зрения, основой обучения может быть совпадение активности пресинаптической и постсинаптической клеток во времени. В дальнейшем та-

кого типа связь между клетками стала называться синапсом Хебба. В настоящий момент считается, что эксплицитная память на нейрональном уровне представлена пре-постсинаптическим совпадением активности нейрона. Но только в 1986 г. Вигстрем и Густафсон показали, что пре-постсинаптичсеский ассоциативный механизм действует в гиппокампе.

В этом случае при прохождении электрического импульса через терминаль пресинаптического аксона происходит выход медиатора -глутамата- в синаптическую щель. Глутамат активирует NMDA(N-метил-D-аспартат)-рецепторы на постсинаптической мембране, что приводит к запуску последовательности реакций, результатом которых является выработка оксида азота – недавно открытого медиатора нового типа. Молекулы этого вещества невелики и легко проходят сквозь мембрану постсинаптической клетки. Большая часть его инактивируется ферментами, а часть оксида азота, которая возвращается к пресинаптической терминали, активирует рецепторы кальциевых каналов в ней, способствуя дополнительному выбросу глутамата из везикул.

Вся последовательность событий повторяется снова и снова, вызывая долговременную потенциацию, если действие оксида азота сочетается с активностью пресинаптического нейрона.

В основе долговременной потенциации в этом случае лежит сочетание двух независимых механизмов ассоциативного обучения: механизм Хебба с участием NMDA-рецепторов и зависимого от активности пресинаптического облегчения. Образование долговременных следов сопровождается увеличением числа пресинаптических терминалей.

Психофизиологические механизмы имплицитной памяти.

Имплицитная память связана с медленным обучением, при котором испытуемый иногда сам не знает, чему и как он обучился. В этом случае происходит фиксация причинно следственных отношений с помощью активности систем памяти, не касающихся общего запаса знаний. В этом типе обучения участвуют сенсорные и моторные области мозга, непосредственно контролирующие сенсорные входы и двигательную активность, которые сочетаются в том или ином задании.

Показано, что для формирования связи между двумя нейронами не требуется активности постсинаптической клетки, если пресинаптическая клетка модулируется еще одним нейроном. Этот модулирующий нейрон способствует увеличению выделения медиатора из терминалей пресинаптического нейрона. Исследователи предположили, что формирование ассоциативной связи возможно в том случае, если потенциалы действия пресинаптической и модулирующей клеток совпадают. Этот механизм назван сейчас пре-модулирующим ассоциативным механизмом. В этом случае условный и безусловный раздражители представлены внутри одной клетки конвергенцией двух сигналов (например, кальция и серотонина) на одном и том же ферменте.

У человека клетки Пуркинье мозжечка могут быть таким центром конвергенции. Дендриты этих клеток располагаются в поверхностных слоях коры, тогда как аксоны направляются к ядрам мозжечка. Афферентная информация поступает в мозжечок к зернистым клеткам через мшистые волокна. Мшистые волокна представляют собой аксоны нейронов, расположенных в ядрах моста. Клетки-зерна посылают параллельные волокна к дендритам каждой клетки Пуркинье. Они же образуют и синапсы с корзинчатыми клетками, которые представляют собой интернейроны и оканчиваются тормозными синапсами на клетках Пуркинье. Активация клеток Пуркинье ведет к торможению активности нейронов ядер мозжечка через ГАМК-эргический механизм, и в дальнейшем - торможение нейронов красного ядра, связанного с двигательными рефлексами.

На дендриты клеток Пуркинье конвергируют не только параллельные волокна зернистых клеток, но и лазающие волокна, которые являются аксонами нейронов нижней оливы. Каждая клетка Пуркинье имеет один синапс с лазящим волокном и множество - с параллельными. Параллельные волокна представляют на клетке Пуркинье афферентные влияния (условный сигнал), а лазящие волокна - безусловный рефлекс. При выработке условного рефлекса в мозжечке возникает избирательное торможение определенных клеток Пуркинье по принципу "торможение торможения", в результате чего из под тормозного контроля высвобождается определенный безусловный рефлекс.