Смекни!
smekni.com

Синхронизация SDH сетей (стр. 7 из 8)

Частных сети, использующие генераторы слоя 4, обычно имеют слабые рабочие характеристики. Они могут быть в 1000 раз хуже, чем в сетях общего пользования, работающих при эффективной долговременной нестабильности частоты от 1х10-9 до 1х10-7. Обычным является появление десятков проскальзываний в день/СРЕ. Кроме того, фазовые выбросы, вызванные плохой синхронизацией, появляются как ошибки передачи. Синхронизация СРЕ может вызвать до сотен до сотен ошибок передачи в день. Избыточные ошибки передачи в частных сетях являются обычным симптомом плохих рабочих характеристик синхронизации.

Рис. 9 – Ошибки каскадирования в частных сетях.

Работа в режиме удержания

Генератор приемника будет работать в режиме удержания в тех редких случаях, когда он теряет все свои эталонные сигналы синхронизации на значительный период времени. Существует два основных фактора, влияющих на характеристики удержания:

начальный сдвиг по частоте и дрейф частоты. Начальный сдвиг частоты вызывается возможностью установки частоты местного генератора и шумом эталонного сигнала синхронизации, когда генератор впервые переходит в режим удержания. Дрейф частоты возникает из-за старения кварцевых генераторов. Требования ITU, предъявляемые к генератору, рассматривают влияние обоих факторов на характеристики удержания по отдельности. Требования ANSI к удержанию рассматривают объединенные характеристики.

Стандарты сопряжения

Современные стандарты генераторов не гарантируют приемлемой работы в условиях стресса. Требования к сопряжению ANSI и ITU разработаны только для идеальных условий. В условиях идеальной работы ежедневная ошибка временного интервала должна сохраняться в пределах 1-10 мксек, а долговременный сдвиг частоты должен быть менее чем 1х10-11. Однако, из-за неопределенности характеристик при работе в условиях стресса, допускается, что долговременные рабочие характеристики реальной сети могут быть хуже, чем 1х10-11.

4. Введение в планирование синхронизации.

Роль планирования синхронизации заключается в определении распределение синхронизации в сети и в выборе генераторов и оборудования, используемых для синхронизации сети. Это включает выбор и определение местоположения управляющего генератора (ов), распределение функций первичных и вторичных сигналов синхронизации и анализ сети, гарантирующий, что достигаются и сохраняются приемлемые уровни характеристик.

Основные принципы.

Чтобы обеспечить наилучшие характеристики и устойчивость сети синхронизации, следует придерживаться нескольких правил и процедур. Наиболее важными из них являются отсутствие замкнутых петель синхронизации, поддержание иерархии, следование принципу BITS, использование наилучших возможностей для транспортировки эталонных сигналов синхронизации и сведения к минимуму их каскадирования.

Петли синхронизации возникают, когда генератор использует для отслеживания свой собственный эталонный сигнал синхронизации (рис. 10). При возникновении таких петель, частота эталонного сигнала становится нестабильной. Генераторы в петле синхронизации медленно начнут работать с погрешностью полного диапазона генератора. Это приводит к тому, что генератор показывает характеристики во много раз хуже, чем в свободном режиме или в режиме удержания. Поэтому важно, чтобы поток эталонных сигналов синхронизации в сети разрабатывался бы таким образом, чтобы петли синхронизации не могли формироваться ни при каких обстоятельствах. Ни одна комбинация первичных и/или вторичных эталонных сигналов не должна привести к петле синхронизации. В правильно спланированной сети всегда можно избежать петель синхронизации.

Рис. 10 – Петля синхронизации.

Поддержание иерархии важно для достижения наилучших рабочих характеристик в сети. В идеальных условиях или в условиях стресса передача синхронизации с лучших на худшие генераторы оптимизирует рабочие характеристики. Синхронизация все еще будет сохраняться при нормальной работе, если синхронизация передается с худшего на лучший генератор. При этом могут немного пострадать рабочие характеристики, т.к. лучший генератор менее чувствителен к кратковременным сбоям сети и будет накапливать меньше ошибок временного интервала. Только в том случае, если генератор, расположенный выше по сети, входит в режим удержания или в свободный режим, это приводит к нарушению иерархии и вызывает основные проблемы. В этом случае генератор с худшими характеристиками, расположенный выше по сети и находящийся в режиме удержания, может иметь частотную погрешность хуже, чем может обеспечить генератор, расположенный ниже по сети. Генератор, расположенный ниже по сети, не будет оставаться ведомым и тоже перейдет в режим удержания. Это приводит к появлению множества генераторов, работающих в режиме удержания и к возникновению избыточных проскальзываний в сети.

Большинство сетевых администраторов при распределении синхронизации следует принципу BITS (создание интегрированного источника синхронизации) или SSU (рис. 11). При использовании метода BITS или SSU наилучший генератор в офисе предназначен для приема эталонных сигналов из-за пределов этого офиса. Все другие генераторы в офисе синхронизируются от этого генератора.

Рис. 11 – Конфигурация BITS/SSU.

Во многих случаях BITS или SSU является генераторами сигнала синхронизации, единственным назначением которого является синхронизация. Другие администрации полагаются на синхронизацию BITS или от коммутационных систем или кросс-коммутаторов. Генератор BITS или SSU должен быть генератором, который наилучшим образом действует в условиях стресса и удержания и является наиболее надежным. В соответствии с принципом BITS или SSU, рабочие характеристики синхронизации офиса будут определяться генератором BITS/SSU, т.к. только генератор BITS/SSU подвержен стрессу в отношении его эталонного сигнала синхронизации.

Для сведения к минимуму количества проскальзываний необходимо применять лучшее оборудование для передачи эталонного сигнала синхронизации. Наилучшее оборудование должно вырабатывать эталонный сигнал с наименьшим числом сбоев. Это относится к эталонному сигналу, который имеет наименьшее среднее число SES и свободен от избыточной нестабильности синхронизации (джиттера и вандера). Эталонные сигналы, являющиеся полезными нагрузками на SDH не должны использоваться для синхронизации, т.к. они подвержены обработке указателя, которая добавляет избыточный джиттер и вандер к эталонному сигналу. Подобным же образом, эталонные сигналы, которые передаются услугами ATM, будут иметь значительный вандер и не должны использоваться для синхронизации.

Каскадирование эталонных сигналов синхронизации по сети должно сводиться к минимуму (рис.12). Характеристики синхронизации будут всегда ухудшаться, т.к. синхронизация передается от генератора к генератору. Чем больше генераторов и оборудования в цепи синхронизации, тем больше будет накопленное ухудшение и тем больше частотный сдвиг. Каждое устройство будет добавлять ухудшения, на которые должны будут реагировать генераторы в цепи. Поэтому, для обеспечения наилучших характеристик цепи синхронизации должны оставаться короткими.

Рис. 12 – Избыточное каскадирование.

5. Планирование синхронизации в сети SDH

Основным моментом планирования сети синхронизации является решение вопроса распределения тактовых сигналов и выбор источников синхросигналов и другого оборудования для тактирования сети. Распределение тактовых сигналов и выбор источников различны для сетей на основе SDH. В этом разделе рассматривается планирование синхронизации для сетей SDH.

Распределение опорного сигнала

ITU определяет способ подключения источника опорного сигнала к сети синхронизации (рисунок 13) как ключевой вопрос распределения сигналов синхронизации. В цепи не должно быть более 10 транзитных или местных узловых точек. Эти узловые точки относятся к 10 офисам, которые используют источник синхросигнала транзитного или местного уровня в качестве источника-размножителя синхросигналов (SSU). Между офисами существуют цепи источников синхросигналов в виде элементов SDH. Ни одна цепь не должна содержать более 20 синхронизируемых источников. Общее число источников в полной цепи подключения опорного сигнала должно быть не более 60. Каждый источник синхросигнала в цепи получает сигнал синхронизации от оптической линии, как показано на рисунке 14.

Рис. 14 – Распределение тактирования с использованием линий SDH

Такое подключение опорного источника было принято на основе моделирования работы в идеальных условиях и должно удовлетворять требованиям обеспечения величины джиттера 5 UI для транспортирования DS3, DS1 и E1. Измерений для экспериментальной проверки результатов моделирования не проводилось. Следует отметить, что дрейф, вносимый при транспортировке DS1 и E1, был незначительным при таком подключении опорного источника. Необходимость уменьшения величин дрейфа путем ограничения допустимой величины временной ошибки в напряженном режиме может потребовать изменения в подключении опорного источника, как обсуждалось в предыдущем разделе. Кроме того, в интересах надежности может потребоваться укорочение длины цепи.