Смекни!
smekni.com

Теория (стр. 4 из 16)

Рис. 1.8. Электронный ключ с диодом Шоттки

1.5. Выпрямительные низкочастотные диоды в блоках питания

1.5.1. Блоки питания на выпрямительных диодах

Источниками питания называются устройства, предназначенные для снабжения электронной аппаратуры электрической энергией и представляющие собой комплекс приборов, которые вырабатывают электрическую энергию и преобразуют ее к виду, необходимому для нормальной работы каждого узла электронной аппаратуры (рис. 1.9).

Рис. 1.9. Общая структурная схема источника питания

Основными звеньями выпрямительного устройства являются трансформатор и вентильный комплект; вспомогательными - фильтр и стабилизатор постоянного напряжения.

Трансформатор служит для преобразования переменного напряжения в переменное такого значения, которое необходимо для получения на выходе источника питания заданного постоянного напряжения.

Вентиль - это прибор, имеющий несимметричную характеристику проводимости, малое сопротивление для прямого тока и большое сопротивление для обратного. С помощью вентиля переменное напряжение преобразуется в пульсирующее.

Фильтр предназначен для сглаживания пульсаций выпрямленного напряжения.

Стабилизатор - это схема, которая отслеживает все изменения напряжения со стороны входа и выхода и поддерживает постоянным напряжение на нагрузке.

В настоящее время в электронных устройствах наиболее часто исполь- зуются следующие схемы выпрямителей:

однофазные (однополупериодные (ОПВ - рис. 1.10, а), двухполупериодные (ДПВ с нулевым выводом и мостовая - рис. 1.10, б, в соответственно);

многофазные (с нулевым выводом, мостовые - схема Ларионова).

1.5.2. Параметры выпрямителей с любым характером нагрузки

Характер нагрузки на выходе выпрямителя определяется или самой нагрузкой, или первым элементом фильтра (фильтр может быть любой сложности).

7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).


Параметры выпрямительных устройств:

1. Действующее значение напряжения на вторичной обмотке трансформатора U2.

2. Амплитудное значение напряжения на вторичной обмотке трансформатора U2мах.

3. Среднее значение выпрямленного напряжения на нагрузке U0.

4. Среднее значение выпрямленного тока в нагрузке I0.

5. Действующее значение напряжения пульсаций на нагрузке Uп.

6. Максимальные изменения напряжения на нагрузке DUвых.

7. Коэффициент пульсаций Кп (характеризует степень приближения кривой выпрямленного напряжения к прямой линии).

8. Коэффициент сглаживания Кс (это параметр фильтра).

9. Коэффициент полезного действия выпрямителя h.

10. Амплитудное значение тока через диод.

11. Обратное напряжение на диоде - наибольшая разность потенциалов, приложенная к диоду в тот момент времени, когда он не пропускает тока.

Во всех схемах выпрямителей активный характер нагрузки, то есть

сглаживающие фильтры отсутствуют.

1.5.4. Выпрямительные устройства

с простым емкостным фильтром на выходе

1.5.4.1. Анализ работы схемы и основные соотношения в ней

Назначение конденсатора на выходе выпрямителя - сглаживать пульсацию в выпрямленном напряжении. При подключении конденсатора фильтра характер нагрузки становится емкостным.

Наличие конденсатора в схеме выпрямителя (рис.1.12, а) существенно меняет режим работы полупроводниковых диодов: напряжение на конденсаторе (рис. 1.12, б) в определенный момент времени делает потенциал катода диода больше потенциала анода и диоды запираются (моменты времени t2 и t4). С момента времени с t2 по t3 диоды заперты и находятся под обратным напряжением, а с t1 по t2 и с t3 по t4 диоды открыты. При наличии
С-фильтра диод переходит в режим прерывистого тока, следовательно, режим диода в прямом направлении становится более напряженным, особенно в момент включения, когда конденсатор еще не заряжен: за короткий промежуток времени (с t3 по t4) ток через диод должен успеть достичь максимального значения и уменьшиться до нуля.

Емкость конденсатора фильтра выбирается из условия, чтобы ее сопротивление по переменной составляющей тока было значительно меньше сопротивления нагрузки (хотя бы в 5–10 раз).

Заряд, который получает конденсатор за время t1 - t2, t3 - t4,


Рис. 1.12. ДВП с простым С-фильторм: а - схема ДПВ, б - временная диаграмма напряжения на нагрузке Uн = f(t)

Заряд, который получает конденсатор за время t1 - t2, t3 - t4,

Заряд, который конденсатор теряет за время t2 - t3, t4...,

Отрезок времени, на котором происходит разряд конденсатора, оказывается близким к половине периода входного напряжения выпрямителя.

По условию стационарности процесса заряда и разряда (= )

=

откуда

(1.19)

где tр = RнС - постоянная времени разряда конденсатора фильтра.

Постоянная составляющая выходного напряжения легко может быть определена из временной диаграммы выходного напряжения (рис. 1.12, б)

Окончательно среднее значение выпрямленного напряжения

(1.20)

В рассматриваемой схеме действующее значение выходного
напряжения

(1.21)

Из выражения (1.17) определяется действующее значение напряжения пульсаций на выходе простого емкостного фильтра

(1.22)

Подставив (1.20) и (1.22) в формулу (1.11) получим выражение для коэффициента пульсаций на выходе фильтра

(1.23)

1.5.6. Выпрямительные устройства, работающие на фильтры,

содержащие индуктивность

Анализ работы выпрямителя с фильтрами на выходе будет ориентирован на мостовую схему выпрямителя (схему Греца).

1.5.6.1. Простой сглаживающий L-фильтр

Сглаживающий фильтр с индуктивностью может быть простым, то есть состоящим только из индуктивности (рис. 1.13). Его фильтрующие свойства основываются на способности индуктивности препятствовать любому изменению тока, проходящего через нее. При возрастании тока в индуктивности происходит накопление магнитной энергии, а когда ток уменьшается, энергия, накопленная в индуктивности, поддерживает этот ток, так как ЭДС на дросселе меняет свой знак. Простые индуктивные фильтры рекомендуется использовать только в двухполупериодных и многофазных схемах выпрямителей, так как в них, в отличие от однополупериодных выпрямителей, не возникает таких резких изменений токов, а следовательно, не образуется таких больших ЭДС самоиндукции.

При анализе фильтра в таком источнике питания рассматривается делитель из L и Rн, на который подается напряжение с выхода мостовой схемы выпрямителя. Общее сопротивление делителя

(1.24)

где - сопротивление нагрузки, Ом.

Рис. 1.13. Простой индуктивный фильтр

Напряжение на входе фильтра можно представить с помощью ряда
Фурье:

где - среднее значение выпрямленного напряжения (постоянная составляющая напряжения на входе фильтра Uо); - первая гармоника в выпрямленном напряжении, имеющая частоту, равную удвоенной частоте сети.

Это напряжение содержит постоянную и ряд гармонических составляющих, но, в отличие от однополупериодного выпрямителя, здесь первой гармоникой будет гармоника с удвоенной частотой сети. В рассматриваемой схеме всеми гармониками после первой можно пренебречь, так как амплитуда второй гармоники составляет всего 20 % от первой, а амплитуда третьей - 8,6 %. Следовательно, можно принять, что на входе


фильтра действует напряжение, которое содержит лишь две составляющие:

Амплитуда переменного напряжения на входе простого индуктивного
фильтра

. (1.25)

Амплитуда переменного напряжения на нагрузке (на выходе простого индуктивного фильтра) определяется по закону Ома

(1.26)

Действующее значение напряжения пульсаций на нагрузке (на выходе простого индуктивного фильтра)

(1.26а)

Коэффициент сглаживания простого индуктивного фильтра

(1.27)

Среднее значение выпрямленного напряжения (потерями постоянного напряжения на сопротивлении дросселя можно пренебречь)