Смекни!
smekni.com

Теория (стр. 6 из 16)

Схема включения стабилитрона приведена в задаче (рис. 1.26). Качество стабилизации напряжения схемой стабилизатора оценивается коэффициентом стабилизации Кст, который показывает во сколько раз относительные изменения входного напряжения больше относительных изменений напряжения на выходе

2. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

2.1. Общие сведения

Биполярный транзистор представляет собой сочетание чередующихся трех областей (n-p-n или p-n-p) и двух p-n-переходов (рис. 2.1, рис. 2.2 соответственно).

Эмиттер - область, сильно легированная носителями, из этой области носители должны быть инжектированы в соседнюю область - базу.

База - область в поперечном сечении, гораздо меньшая, чем две другие и, кроме того, очень слабо легированная носителями.

Коллектор - область, куда должны быть втянуты носители из базы, впрыснутые туда из эмиттера (явление экстракции). Коллектор легируется носителями гораздо слабее, чем эмиттер.

Переход между базой и эмиттером называется эмиттерным (ЭП), а между базой и коллектором - коллекторным (КП). Каждый из переходов может быть включен либо в прямом, либо в обратном направлении, то есть переходы равноправны и режим работы транзистора будет зависеть от способа его включения. В соответствии с этим различают четыре способа включения или четыре режима работы транзистора.

Рис. 2.1. Структура и схемное изображение транзистора n-p-n-типа

Рис. 2.2. Структура и схемное изображение транзистора p-n-p-типа

2.2. Способы включения биполярного транзистора

1. Активный (или режим усиления, рис. 2.3, а) - нормальное включение, при котором на эмиттерный переход подается прямое напряжение, а на коллекторный - обратное. В активном режиме коэффициент передачи тока эмиттера

. В таком режиме работают линейные усилители.

2. Инверсный (рис. 2.3, б). На эмиттерный переход подается обратное напряжение, а на коллекторный - прямое. В этом режиме коэффициент передачи тока коллектора заметно меньше коэффициента передачи тока эмиттера при нормальном включении

3. Режим насыщения (рис. 2.3, в). На обоих переходах действуют прямые напряжения, и таким образом транзистор работает в режиме двойной инжекции (в базу поступают носители и из эмиттера, и из коллектора).

4. Режим отсечки (рис. 2.3, г). На обоих переходах действуют обратные напряжения, транзистор заперт и через переходы текут лишь токи неосновных носителей.


Рис. 2.3. Способы включения транзистора: а - нормальное; б - инверсное; в - двойной инжекции; г - отсечки

Режимы насыщения и отсечки используются в ключевом режиме.

Наиболее распространенным является активный режим (рис. 2.3, а), когда на эмиттерный переход подается прямое, а на коллекторный - обратное напряжения. При этом через переходы текут примерно одинаковые токи, но эмиттерный ток течет через прямосмещенный переход с малым сопротивлением и под действием малого напряжения (доли вольта), а коллекторный ток - через обратносмещенный переход с большим сопротивлением и под действием большого напряжения (десятки, сотни вольт). Этот факт и создает принципиальную возможность использования транзистора в качестве усилителя электрических колебаний (преобразователя мощности). Разделение электронных усилителей на усилители напряжения, тока, мощности чисто условное и это связано с тем, что в ряде случаев основными показателями служат не входная и выходная мощности, а ток или напряжение на входе и выходе усилителя.

2.3. Схемы включения биполярных транзисторов

Существует три схемы включения биполярных транзисторов: с общей

базой (ОБ), с общим эмиттером (ОЭ), с общим коллектором (ОК). Электрод, который будет общим для входной и выходной цепей усилителя, определяет название схемы включения транзистора.

В схеме включения транзистора с ОБ (рис. 2.4, а) входным током будет ток эмиттера, а выходным - ток коллектора, следовательно, усиления тока в такой схеме не происходит. Передача тока эмиттера в цепь коллектора оценивается статическим коэффициентом передачи тока эмиттера «a»:

(a = 0,96-0,99). (2.1)


Рис. 2.4. Схемы включения транзистора: а - с ОБ; б - с ОЭ; в - с ОК

Уже то, что транзистор при таком включении не дает усиления по току, является показателем низкого входного сопротивления схемы с ОБ.

Схемы включения транзистора с ОЭ и с ОК (рис. 2.4, б, в) - это схемы с базовым управлением: выходной ток следует за всеми изменениями входного базового тока. В схеме с ОЭ выходным током является ток коллектора, а в схеме с ОК - ток эмиттера. Во всех схемах включения (ОБ, ОЭ, ОК) источники постоянного напряжения обеспечивают режимы работы транзисторов по постоянному току , то есть необходимые начальные значения напряжений и токов. При отсутствии на входе источников переменного сигнала режим, в котором находится транзистор, принято называть режимом покоя, а токи и напряжения - параметрами покоя ( токи покоя, напряжения покоя).

Усилительные свойства транзистора по току в схемах с ОЭ и с ОК оцениваются с помощью интегрального коэффициента передачи тока
базы
b :

(2.2)

(2.3)

Таким образом, усиление по току у транзистора в схеме с ОК лучше, чем в схемах с ОБ и ОЭ.

При проектировании транзисторных усилителей преимущество отдается графоаналитическому методу расчета. Такой метод расчета осуществляется по статическим ВАХ транзистора. Для анализа статических характеристик транзистора используется математическая модель транзистора - модель Молла-Эберса, которую несложно получить, используя его физическую модель (рис. 2.5).

2.4. Физическая и математическая модели транзистора

(модель Молла-Эберса)

Биполярный транзистор - это два встречно включенных взаимодействующих электронно-дырочных p-n-перехода, на основании чего его можно представить в виде физической модели (рис. 2.5) - модели Молла-Эберса.

Рис. 2.5. Физическая модель биполярного транзистора

Модель Молла-Эберса характеризует только активную область транзистора: она представлена диодами без учета пассивных участков базы и коллектора. Кроме того, в модели хорошо просматривается принципиальная равноправность переходов, другими словами, обратимость транзистора, которая лучше всего проявляется в режиме двойной инжекции.В режиме двойной инжекции оба перехода работают одновременно в режиме инжекции и в режиме экстракции.

ВАХ эмиттерного и коллекторного прямосмещенных p-n-переходов описывается уравнениями:

для эмиттерного перехода

(2.4)

для коллекторного перехода

(2.5)

где: I1- ток, инжектируемый в базу из эмиттера; I2- ток, инжектируемый в базу из коллектора; Iэо, Iко- тепловые токи (именно тепловые, а не обратные токи переходов, которые в случае кремния намного превышают тепловые. На практике тепловые токи каждого перехода принято измерять, обрывая цепь второго перехода).

Из физической модели транзистора (рис. 2.5) следует:

(2.6)

(2.7)

где: an - коэффициент передачи тока эмиттера при нормальном включении транзистора (aN= 0,96-0,99); ai - коэффициент передачи тока коллектора при инверсном включении транзистора (ai = 0,5-0,7); aNI1 - ток экстракции через коллекторный переход ( ток носителей, собираемых коллекторным переходом из базы, впрыснутых туда эмиттером); aiI2 - ток экстракции через эмиттерный переход (ток носителей, собираемых эмиттерным переходом из базы, впрыснутых туда коллектором), этот ток значительно меньше тока " aNI1".

Подставляя значения токов I1и I2 из (2.4) и (2.5) в (2.6) и (2.7), получаем уравнения, описывающие статические характеристики транзистора:

(2.8)

(2.9)

(2.10)

Уравнения (2.8), (2.9), (2.10) называются формулами Молла-Эберса; это и есть математическая модель транзистора, которая лежит в основе анализа его статических режимов.

Примечание. В справочной литературе по транзисторам очень часто статические входные и выходные характеристики даются в разных режимах, что затрудняет работу с ними. В этом случае, используя модель Молла-Эберса, можно перестроить характеристики для конкретного режима.