Смекни!
smekni.com

Логика (стр. 12 из 13)

Этот способ опровержения состоит в том, что показываются ошибки в форме доказательства. Наиболее распространенной ошибкой является подбор таких аргументов, из которых истинность опровергаемого тезиса не вытекает. Доказательство может быть построено неправильно, если нарушено какое – либо правило умозаключения или сделано «поспешное обобщение».

Обнаружив ошибки в ходе демонстрации, мы опровергаем ее ход, но не опровергаем сам тезис. Доказательство же истинности тезиса обязан дать тот, кто его выдвинул.

Итак, все перечисленные способы опровержения тезиса, аргументов, хода доказательства применяются, не изолировано, а в сочетании друг с другом.

Умозаключения по аналогии, их виды

Термин «аналогия» означает сходство двух предметов, в каких – либо свойствах или отрицаниях. Умозаключение по аналогии один из древних видов умозаключения, присущий человеческому мышлению с самых ранних ступеней развития.

Аналогия – умозаключение о принадлежности предмету определенного признака на основе сходства в существенных признаках с другим предметом. В форме такого умозаключения осуществляется приписывание предмету свойства или перенос отношений.

В зависимости от характера информации переносимой с одного предмета на другой (с модели на прототип), аналогия делится на 2 вида:

1.Аналогия свойств 2. аналогия отношений.

В аналогии свойств рассматриваются 2 единичных предмета, а переносимыми признаками являются свойства этих предметов.

Схема аналогии свойств в традиционной логике такова:

Предмет А обладает свойствами а, в, с, д, е, ф.

Предмет В обладает свойствами а, в, с, д.

Вероятно, предмет В обладает свойствами е, ф.

Примером аналогии свойств служит аналогия симптомов протекания той или иной болезни у 2 разных людей (2 единичных предмета) или 2-х групп людей ( взрослых и детей). Исходя из сходства признаков болезни (симптомов) врач по аналогии ставит диагноз.

В аналогии отношений информация, переносимая с модели на прототип, характеризует отношения между 2- мя предметами.

Кроме деления на 2 вида –аналогия свойств и аналогия отношений- по характеру выводного знания умозаключения по аналогии можно разделить на 3 вида:

1. строгая аналогия, дающая достоверное заключение;

2. нестрогая аналогия, дающая вероятное заключение

3. ложная аналогия, дающая ложное заключение.

Строгая аналогия. Характерным признаком, отличающим строгую аналогию от нестрогой и ложной, является наличие необходимой связи признаков сходства с переносимым признаком.. Схема строгой аналогии такова:

Предмет А обладает признаками а, в, с, д, е.

Предмет В обладает признаками а, в, с, д.

Из совокупности признаков а, в, с, д, необходимо следует е.

Предмет В обязательно обладает признаком е.

Если из совокупности признаков М= а, в, с, д, закономерно, необходимо следует признак е, то в виде формулы алгебры логики эту зависимость записывают так:

Последняя формула является законом логики, т.к. по определению логическое следствие Е не может быть ложным (т.е признак е отсутствует) когда посылки истинны. Структура строгой аналогии подобна структуре правила условно категорического умозаключения и поэтому дает достоверный вывод. Деление их в том, что в всего одно основание и одно следствие, а в строгой аналоги единая совокупность оснований (сходных признаков), взятая как единое множество (не пустое и не единичное). Если бы множество было пустым, т.е. не было бы сходных признаков, то аналогия была бы невозможна, а если бы множество было единичным, то это был бы , который выражается формулой

Строгая аналогия применяется в научных исследованиях, в математических доказательствах.

Нестрогая аналогия.

В отличие от строгой аналогии нестрогая аналогия дает не достоверное, а лишь вероятное заключение. Если ложное суждение обозначить через О, а истину через 1, тот степень вероятности заключений по нестрогой аналогии лежит в интервале от 1 до 0, т.е. 1>Р>0, где Р- обозначение вероятности заключения по нестрогой аналогии.

Примерами нестрогой аналогии является следующие: испытание модели корабля в бассейне и заключение о том, что настоящий корабль будет обладать теми же характеристиками, испытание прочности моста на модели, затем построение настоящего моста.

Для повышения степени вероятности заключений по нестрогой аналогии следует выполнить ряд условий:

1. число общих признаков должно быть возможно большим . 2 сходные признаки должны быть существенными.

Аналогия на основе сходства несущественных признаков типична для ненаучного и детского мышления. Например, дети могут съесть ядовитые ягоды на основе их внешнего сходства со съедобными.

3.общие признаки должны быть по возможности более разнородными;

4 необходимо учитывать количество и существенность пунктов различия. Если предметы различаются в существенных признаках, то заключение по аналогии м.б. оказаться ложным. 5. переносимый признак должен быть того же типа, что и сходные признаки.

Ложная аналогия.

При нарушении указанных выше правил аналогия может дать ложное заключение, т.е.стать ложной. Вероятность заключения по ложной аналогии равна 0 (Р=0). Ложные аналогии иногда делаются умышленно, с целью ввести противника в заблуждение, в др случаях они делаются случайно, в результате незнания правил построения аналогии.

Подобную ошибку совершали в 19 в сторонники вульгарного материализма Л. Бохнер, К.Фохт, которые проводя аналогию между печенью и мозгом, утверждали, что мозг выделяет мысль так же, как и печень – желчь.

Обобщим сказанное о строгой , нестрогой и ложной аналогиях. Если Р=1, т.е. заключение получается достоверным, то это будет строгая аналогия, если 1>Р>0, т. е. заключение будет вероятным, то это нестрогая аналогия. Если Р=0,т.е заключение- ложное суждение, то это будет ложная аналогия.

Индуктивные умозаключения, их виды

Дедуктивные умозаключения позволяют выводить из истинных посылок при соблюдении соответствующих правил истинные заключения.

Индуктивные умозаключения обычно дают нам не достоверные, а лишь вероятные (правдоподобные) заключения.

Индукцией называется умозаключение от знания меньшей степени общности к новому знанию большей степени общности (т.е. от отдельных частных случаев мы переходим к общему суждению).

Общее в природе и обществе не существует самостоятельно, до и вне отдельного, а отдельное не существует без общего. Общее существует в отдельном, через отдельное, т.е. проявляется в конкретных предметах. Поэтому общее, существенное, повторяющееся, и закономерное в предметах познается через изучение отдельного, и одним из средств познания общего выступает индукция. Индукция бывает полная и неполная. Кроме них есть математическая индукция.

Полной индукцией называется такое умозаключение, в котором общее заключение о некотором классе предметов, делается на основании изучения всех предметов этого класса.

Заключение может быть сделано из единичных суждений, как это видно из приведенного ниже умозаключения. Явление, о котором пойдет речь, называют «пародом» планет. Один раз в 179 лет все планеты располагаются вместе по одну сторону от солнца в секторе с углом в 95. момент их наибольшего сближения произошел 10 марта 1982 г.

Земля в 1982 г. Была расположена вместе с др планетами по одну сторону от солнца в секторе с углом в 95 градусов.

Марс в 1982 был…

…………

Меркурий в 1982 был……

Земля, марс, Венера, Нептун, Плутон,, Сатурн, уран, юпитер, меркурий- планеты солнечной системы.

Все планеты солнечной системы в 1982 г. Были расположены вместе по одну сторону от солнца в секторе с углом 95 .

Заключение по полной индукции может быть сделано не только из единичных, но и из общих суждений.

Полная индукция дает достоверное заключение, поэтому она часто применяется в математических и в других строгих доказательствах. Чтобы использовать полную индукцию, надо выполнить следующие условия:

1.точно знать число предметов или явлений, подлежащих изучению.

2. убедиться, что признак принадлежит каждому элементу этого класса.

3. число элементов изучаемого класса должно быть невелико.

Разновидностью полной индукции является умозаключение от отдельных частей к целому.

Неполная индукция применяется тогда, когда мы не можем наблюдать все случаи изучаемого явления, а заключения делаем для всех. Например, при нагревании мы видим расширение азота, , водорода, и делаем заключение, что все газы при нагревании расширяются.

Математическая индукция.

Один из важнейших методов доказательства в математике основан на аксиоме (принципе) математической индукции.

Пусть 1) свойство А имеет место при п=1;

3) из предложения о том, что свойством а обладает какое- либо натуральное число п, следует, что свойством А обладает любое натуральное число.

Математическая индукция широко используется в школе при выведении ряда формул арифметической и геометрической прогрессии и др.

Итак, индукция – умозаключение от знания меньшей степени общности к новому знанию большей степени общности.

Индукция бывает полной, неполной и математической.


Дедуктивные умозаключения. Категорический силлогизм, его состав, аксиома, фигуры (4), модусы, разновидности

Категорический силлогизм- это вид дедуктивного умозаключения, в котором из 2-х истинных категорических суждений, связанных средним термином при соблюдении правил необходимо следует заключение.

Силлогизм от греческого – «сосчитывание», «выведения следствия».

В составе категорического силлогизма присутствуют 2 посылки и заключение. Все металлы (М) электропроводны(Р)- большая посылка.