Смекни!
smekni.com

Свойства бесконечной величины. Различие актуальной и потенциальной бесконечности (стр. 7 из 9)

2) каждый элемент обоих множеств попал в одну и только одну пару.

Например, если множество А состоит из юношей на танцплощадке, а множество В - из девушек на той же площадке, то пары {а, b) образуются из танцующих друг с другом юноши и девушки. Читатель сам легко придумает разнообразные примеры таких соответствий между множествами равной численности" [5, c.48-53]. Важнейшим поворотным пунктом в теории множества был момент, когда Кантор решил применить идею взаимно однозначного соответствия для сравнения бесконечных множеств. Иными словами, по Кантору, два бесконечных множества А и В имеют поровну элементов, если между элементами этих множеств можно установить взаимно однозначное соответствие.

"Зададим себе новый вопрос: Равна ли часть целому? Основной догмой, которую пришлось отбросить, было положение, установленное на самой заре развития математики: часть меньше целого. Это положение безусловно верно для конечных множеств, но для бесконечных множеств оно уже теряет силу. Вспомните, как расселил директор необыкновенной гостиницы космозоологов по четным номерам. При этом расселении жилец из № п переезжал в № 2п. А мы договорились считать, что бесконечные множества, между которыми можно установить взаимно однозначное соответствие, содержат поровну элементов. Значит, бесконечное множество натуральных чисел содержит столько же элементов, сколько и его часть - бесконечное множество четных чисел.

Вообще между множеством всех натуральных чисел и любой его бесконечной частью всегда можно установить взаимно однозначное соответствие. Для этого достаточно перенумеровать по порядку числа из этой части.

Мы уже выяснили, что значат слова "два бесконечных множества имеют поровну элементов". А теперь выясним, что значит "одно бесконечное множество имеет больше элементов, чем второе". Для конечных множеств это тоже можно выяснить, не прибегая к счету. В этих случаях мы поступали так: устанавливали взаимно однозначное соответствие между одним множеством и частью другого множества. Если это удавалось, то отсюда следовало, что второе множество содержит больше элементов, чем первое. Пользуясь этим методом, легко установить, например, что рыб в океане меньше, чем атомов на земном шаре (хотя оба эти множества и конечны, их вряд ли возможно пересчитать). Для этого достаточно каждой рыбе поставить в соответствие один атом, входящий в состав ее тела. Тем самым будет установлено взаимно однозначное соответствие между множеством всех рыб и частью множества всех атомов на земном шаре.

К сожалению, для бесконечных множеств так просто поступить нельзя. Ведь мы уже видели, что бесконечное множество может иметь столько же элементов, сколько и его часть. Поэтому только из того, что бесконечное множество А имеет столько же элементов, сколько часть бесконечного множества В, еще нельзя заключить, что оно имеет меньше элементов, чем все множество В.

Мы скажем, что если А можно поставить во взаимно однозначное соответствие с частью бесконечного множества В, то бесконечное множество В имеет не меньше элементов, чем бесконечное множество А. Можно доказать, что это отношение обладает всеми свойствами неравенств:

1) каждое бесконечное множество имеет не меньше элементов, чем оно само;

2) если в одном бесконечном множестве не меньше элементов, чем во втором, а во втором - не меньше элементов, чем в третьем, то первое бесконечное множество имеет не меньше элементов, чем третье;

3) если каждое из двух бесконечных множеств имеет не меньше элементов, чем другое, то оба имеют поровну элементов.

Первое свойство вытекает из того, что, ставя в соответствие каждому элементу бесконечного множества А сам этот элемент, получаем взаимно однозначное отображение А на себя. Прозрачен и смысл второго свойства: если А можно взаимно однозначно отобразить на часть бесконечного множества В, а В - на часть бесконечного множества С, то существует взаимно однозначное отображение А на часть С. А вот третье свойство при всей простоте его формулировки означает довольно сложное утверждение: если можно взаимно однозначно отобразить бесконечное множество А на часть бесконечного множества В, а бесконечное множество В на часть бесконечного множества А, то существует и взаимно однозначное отображение всего бесконечного множества А на В.

Выясним теперь, в каких же случаях говорят, что мощность бесконечного множества А меньше мощности бесконечного множества В. Может случиться, что бесконечное множество В имеет не меньше элементов, чем бесконечное множество А, но эти бесконечные множества не эквивалентны. Иными словами, может случиться, что есть взаимно однозначное соответствие между бесконечным множеством А и частью бесконечного множества В, но не существует взаимно однозначного соответствия между А и всем бесконечным множеством В. Вот в этом случае мы и будем говорить, что А имеет меньше элементов, чем В.

Мы уже говорили, что любая бесконечная часть множества натуральных чисел счетна. Это означает, что не может существовать бесконечное множество, мощность которого была бы меньше мощности счетного множества. Докажем теперь, что в каждом бесконечном множестве есть счетное подмножество. Отсюда будет следовать, что мощность счетного множества не больше мощности любого бесконечного множества, то есть что эта мощность - самая маленькая из бесконечных.

Чтобы выбрать счетное подмножество из бесконечного множества А, поступим так. Выберем один элемент х1 - это можно сделать, так как множество А бесконечно и, во всяком случае, не пусто. Ясно, что после удаления элемента X1множество А не исчерпывается, и мы сможем выбрать из него второй элемент хг. После этого выберем третий элемент х3и т.д. В результате мы извлечем из множества А счетное подмножество занумерованных элементов. Немного усовершенствовав это доказательство, можно добиться, чтобы после удаления счетного подмножества осталось бесконечное множество. Для этого надо после извлечения подмножества Xвернуть обратно все элементы с четными номерами. В результате получится, что мы извлекли счетное подмножество, а оставшееся множество еще содержит бесконечное множество элементов и, быть может, еще много других элементов.

Нетрудно доказать следующие теоремы:

Мощность бесконечного множества, не изменяется от прибавления к нему счетного множества.

Мощность несчетного множества не меняется от удаления из него счетного множества.

Эти теоремы еще раз подтверждают, что счетные множества - самые малые из бесконечных множеств.

Все построенные до сих пор множества оказались счетными. Это наводит на мысль: а не являются ли вообще все бесконечные множества счетными? Если бы это оказалось так, то жизнь математиков была бы легкой: все бесконечные множества имели бы поровну элементов и не понадобился бы никакой анализ бесконечности. Но выяснилось, что дело обстоит куда сложнее: несчетные множества существуют и притом могут иметь самые разные мощности. Одно несчетное множество всем хорошо знакомо - это множество всех точек на прямой линии. Но прежде чем говорить об этом множестве, мы расскажем о другом, тесно связанном с ним множестве Л вариантов заполнения необыкновенной гостиницы" [5, c.53-63].

Заметим, что доказать несчетность какого-то множества вообще нелегко. Ведь доказать, что какое-то множество счетно, это значит просто придумать правило, по которому нумеруются его элементы. А доказать несчетность какого-то множества, это значит доказать, что такого правила нет и быть не может. Иными словами, какое бы правило мы ни придумали, всегда найдется незанумерованный элемент множества". Чтобы доказывать несчетность множеств, Кантор придумал очень остроумный способ, получивший название диагонального процесса. Метод доказательства Кантора становится ясен из рассказа Иона Тихого "Несостоявшаяся перепись".

"До тех пор пока читатель не познакомился с удивительными свойствами бесконечных множеств, ответ на вопрос: "Где больше точек, на отрезке длиной в 1 мм или на отрезке длиной в 1 м?" - вряд ли вызвал бы у него хоть тень сомнения. Ясно, что на отрезке в 1 м куда больше точек, он ведь в 1000 раз длиннее. Но теперь, вероятно, читатель поостережется делать столь безапелляционные заявления - уж слишком не похожи свойства бесконечных множеств на то, чему учит обыденная жизнь. И действительно, на очень коротком и очень длинном отрезках точек поровну! Иными словами, всегда можно установить взаимно однозначное соответствие между точками этих отрезков.

Трудно примириться с мыслью, что дорога длиной в миллион световых лет имеет столько же точек, сколько и радиус атомного ядра! Но еще неожиданнее оказалось то, что даже на всей бесконечной прямой не больше точек, чем на отрезке, то есть что между множеством точек на прямой и множеством точек на отрезке можно установить взаимно однозначное соответствие." [5, c.65-66].

С тем, что на бесконечной прямой столько же точек, сколько и на отрезке, математики, скрепя сердце, примирились. Но следующий результат Кантора оказался еще более неожиданным. В поисках множества, имеющего больше элементов, чем отрезок, он обратился к множеству точек квадрата. Сомнения в результате не было: ведь отрезок целиком размещается на одной стороне квадрата, а множество всех отрезков, на которые можно разложить квадрат, само имеет ту же мощность, что и множество точек отрезка.

Георг Кантор пришел к выводу, что бесконечное множество точек квадрата имеет не большую мощность, чем бесконечное множество точек отрезка. Но его мощность и не меньше, а потому эти мощности совпадают. Не только квадрат, но и куб имеет столько же точек, сколь и отрезок. Вообще любая геометрическая фигура, содержащая хоть одну линию, имеет столько же точек, сколько и отрезок. Такие бесконечные множества называют множествами мощности континуума (от латинского continuum - непрерывный).