Смекни!
smekni.com

Эффективность методов борьбы с асфальтосмолистыми парафиновыми отложениями в условиях НГДУ Нурлатнефть (стр. 7 из 12)

Промышленность выпускает для этих целей агрегаты и установки нескольких конструкций.

Промысловая паровая передвижная установка ППУА-1600/100 предназначается для депарафинизации оборудования паром, вырабатываемым специальным парогенератором, смонтированным на шасси автомобиля КрАЗ – 255Б1А.

Парогенератор – вертикальный прямоточный змеевиковый котел, превращающий воду в пар , в количестве 1.6м3/с с давлением 10мпа и температурой до 310 С . При воздействие пара на АСПО последние расплавляются, отделяясь от стенок труб и, смешиваясь с жидкостью, выносятся из скважины.

Агрегат депарафизационный предназначен для очистки скважин и оборудования от АСПО жидкостью, подогреваемой в нагревателе до 150 С и нагнетаемой насосом с производительностью 12м3/ч и давлением до 13мпа.

Электронагрев – один из способов тепловой обработки, состоящий в размещение источника тепла непосредственно в зоне воздействия, и обладающий наибольшей эффективностью: в этом случае удается избежать потерь тепла.

Для этой цели применяется специальная установка УЭС – 1500, включающая в себя каротажный подъемник типа ПК – 2 , смонтированный на автомобиле, и автотрансформаторе

3.3.3 Химические методы

Химические методы получили широкое развитие в последние годы, когда были созданы химические реагенты, активно воздействующие на парафин – ингибиторы парафинообразования. Среди них можно выделить несколько классов:

1) смачиватели создают на оборудовании защитную гидрофильную пленку, препятствующую прилипанию кристаллов парафина;

2) диспергаторы стимулируют взвешенное состояние кристаллов;

3) Модификаторы взаимодействуют с кристаллами парафина и диспергируют их.

В настоящее время вследствие высокой стоимости химреагентов проблема не в их приобретение, а в экономном использовании. Поэтому на первый план выдвигается разработка наиболее эффективных способов доставки реагентов в скважину. На практике получили применение три способа подачи реагента:

А) Залповый – разовая закачка большого объема химреагентов в пласт через определенные интервалы времени;

Б) Затрубный – дозирование в затрубное пространство устьевыми дозаторами;

В) Скважинный – дозирование к приему насоса скважинными дозаторами.

Залповый способ неэкономичен, так как реагент выносится вместе с жидкостью и используется по результатам исследований на 20-30%.

Учитывая высокую стоимость химических реагентов, особенно импортных, повсеместно применение этого способа вряд ли можно считать оправданным.

При дозирования в затрубное пространство реагент, проходя слой эмульгированной нефти, к приему насосов или башмаку труб поступает лишенным активности. С целью достижения эффекта приходится намеренно увеличивать дозу реагента, что снижает экономичность дозатора.

Следует иметь в виду еще один фактор: многие реагенты при снижение температуры окружающей среды увеличивают вязкость, а в зимнее время – замерзают. Это затрудняет операции с ними.

Скважинные дозаторы монтируют на приеме насосов и подают реагент непосредственно в область приема. Таким образом, реагент имеет высокую температуру, что усиливает его активность и немедленную реакцию.

Разработаны конструкции, позволяющие регулирование дозы и синхронную работу с насосом.

Опыт испытаний различных дозаторов, проведенный промысловыми инженерами и учеными, позволил выбрать следующие направления совершенствования и проектирования новых конструкций.

1) Простота устройства, позволяющая изготовить дозатор в условиях промысловых мастерских.

2) Незначительная масса ( в пределах 10-15 кг ) позволяющая транспортировать о монтировать его без привлечения грузоподъемных средств.

3) Простота монтажа, не требующая специальных дополнительных сооружений и сварочных работ на устье скважины.

4) Отказ от электропривода, как опасного, дорогостоящего и ненадежного, и использование в качестве привода движущих элементов СК.

5) Обеспечение подогрева химреагента.

3.4 Анализ причин ремонтов скважин оборудованных УШСН

Таблица 4. Причины ремонтов скважин, оборудованных УШСН в ЦДНГ № 3.

Причины ремонтов 01.01.05 01.01.06
Обрыв штанговых колон УШСН 15 13
Обрыв штанг по телу ( УШСН ) 13 12
Обрыв укороченной штанги УШСН 0 0
Обрыв штанги по муфте УШСН 2 1
Негерметичность НКТ ( УШСН ) 0 3
Обрыв НКТ по телу ( УШСН ) 1 0
Обрыв НКТ по резьбе ( УШСН ) 1 4
Износ резьбы НКТ ( УШСН ) 3 0
Трещина в теле НКТ ( УШСН ) 2 4
Трещина в муфте НКТ ( УШСН ) 0 1
Износ НКТ истиранием ( УШСН ) 1 0
Износ насоса ( УШСН) 3 2
Неисправность насоса (УШСН ) 1 0
Отворот насоса ( УШСН ) 0 1
Отложения парафина на приеме УШСН 4 4
Отложения гипса на приеме УШСН 0 0
Отложение солей на приеме УШСН 0 0
Всего 46 41

Уменьшение обрывов штанг связаны с выполнением мероприятий по снижению обрывов и отворотов штанговых колонн. Также с запуском на базе ПРЦГНО установки по дефектности штанги НКТ.

Увеличение ремонтов по причине отложения АСПО на приеме насоса может объяснить тем, что в 2006 году не было произведено тщательной профилактической промывки.

3.5 Анализ методов борьбы с АСПО и определение оценки эффективности применяемых методов

Таблица 5. Методы борьбы с АСПО в ЦДНГ №3.

01.01.05 01.01.06
Промывки НДС 0 2
Скребки - центраторы 28 28
НКТ с покрытием БМЗ 13 18

Без единой методики определения результативности методов, способов и технологий предупреждения выпадения АСПО невозможно вести серьезную аналитическую работу.

Под эффективностью мероприятия понимается обеспечение стабильной производительной работы скважины без образования АСПО на оборудовании. В физическом отношении эффективность выражается без парафиновым периодом работы скважины, превышающим базовый период. Проблема заключается в точном фиксировании без парафинового периода работы за счет применения мероприятия.

Естественно, необходимо предварительно зафиксировать базовый период работы скважины. Вместо традиционных субъективных МОП и МРП предлагается система численных критериев.

- максимальная нагрузка на головку балансира станка-качалки.

- сила тока на электродвигателе станка-качалки при ходе вверх/вниз.

- дебит скважины.

Все эти численные показатели определяются известными, относительно несложными, измерениями. В частности, нагрузки на головку балансира определяется расчетным методом или вычисляется по диаграмме, сила тока на электродвигателе замеряется стандартным электроприбором, дебит замеряется устьевыми дебитомерами типа СКЖ-15-40М, СКЖ-30-40 или автоматическими устройствами на ГЗУ.

Каждый из трех численных показателей работы скважины является индикатором появления и накопления АСПО на поверхности НКТ и штанг.

Но в комплексе они взаимодополняют друг друга по чувствительности и информативности процесса. Общая схема анализа эффективности методов предупреждения выпадения АСПО заключается в следующем:

- получение базовых данных / замеры скважины до мероприятия, слежение за их динамикой от начальных значений до критических.

- проведение мероприятия по борьбе с АСПО / например , промывка лифта, закачка реагента в затрубное пространство, спуск дозатора с ингибитором, спуск НКТ с покрытием или др.

- замеры скважины, слежение за их динамикой в течение анализируемого периода.

- обработка данных, анализ, выводы.

3.6 Контроль за работой скважин на которых применяются методы борьбы с АСПО

При эксплуатации скважины в обычном режиме все показатели периодически замеряются с частотой, не менее 2-4 раза в месяц, в зависимости от темпа запарафинивания скважины. Одним из признаков этого момента является зависание штанг при ходе плунжера вниз. Величины контрольных параметров, снятых в этот период, назовем критическими.

Скважина останавливается. Производят подъем глубинно-насосного оборудования и его отчистку от АСПО. Скважина пускается в работу с применением того или иного мероприятия по предупреждению выпадения АСПО.

После выхода скважины на стабильный режим работы замеряются контрольные показатели. С периодичностью 2-4 раза в месяц снимаются замеры анализируемых показателей. Контроль за работой скважины ведут до момента достижения критических показателей, т.е. до момента полной парафинизации оборудования.

Аналогичным образом проводятся промысловые работы по замеру и слежению за контрольными параметрами при последовательном испытании других методов борьбы с АСПО на этой скважине.

3.8 Выводы и предложения

1. Мероприятия НГДУ по борьбе с АСПО в основном выполняются однако при планировании мероприятий не учитывается опыт применения данных методов в структурных подразделениях ОАО «Татнефть».

2. Осуществлять системный подход к парафиновой проблеме, нет четкого представления о способах и объемах применения различных методов борьбы с запарафиниванием.

3. Основным методом борьбы с АСПО в НГДУ остаются промывки.

Отмечена тенденция перехода от дорогих дистиллятных промывок не более дешевые промывки с применением МЛ-80. Однако, в НГДУ в большом объме применяются высокозатратные обработки скважин горячей нефтью и неэффективные обработки ингибитором парафиноотложений ТНПХ-1А.

4. Наибольшее количество ремонтов по причине запарафинивания приходится на фонд скважин с УШГН, где в качестве основного или дополнительного метода борьбы с АСПО применялись промывки, что свидетельствует об их низкой технологической эффективности.