Алгоритмы анализа чувствительности:
- Выбор ключевого показателя эффективности инвестиций (IRR или NPV).
- Выбор факторов, относительно которых разработчик инвестиционного проекта не имеет однозначного суждения (т. е. находится в состоянии неопределенности).
- Типичными являются следующие факторы:
· капитальные затраты и вложения в оборотные средства,
· цена товара и объем продажи,
· компоненты себестоимости продукции,
· время строительства и ввода в эксплуатацию проекта.
- Установление номинальных и предельных (нижних и верхних) значений неопределенных факторов, выбранных на втором шаге процедуры.
- Расчет ключевого показателя для всех выбранных предельных значений неопределенных факторов.
- Построение графика чувствительности для всех неопределенных факторов (Spider Graph).
Чувствительность проекта к изменению неопределенных факторов.
Таким образом, график чувствительности позволяет сделать вывод о наиболее критических факторах инвестиционного проекта, с тем чтобы в ходе его реализации обратить на эти факторы особое внимание с целью сокращения риска.
3. Анализ сценариев – это метод анализа риска, который наряду с базовым набором исходных данных проекта рассматривает ряд других наборов данных, которые, по мнению разработчиков проекта, могут иметь место в процессе реализации.
При анализе сценария подбираются показатели, при «плохом» стечении обстоятельств (малый объем продаж, низкая цена продажи, высокая себестоимость единицы товара) и при «хорошем» стечении обстоятельств. После этого, NPV при хороших и плохих условиях вычисляются и сравниваются с ожидаемым значением NPV проекта.
Например может быть рассмотрен пессимистичные сценарии снижения цены продажи на 5%. В этом случае IRR изменится в худшую сторону. Или может быть представлен комплексный сценарий в виде одновременного увеличения цены готовой продукции и стоимости сырья на единицу продукции на 5 %. Данный сценарий может быть квалифицирован как оптимистичный. Что может привести к росту IRR.
4. Статистическое моделирование Монте – Карло – это процедура, с помощью которой математическая модель определения какого-либо финансового показателя (в общем случае NPV) подвергается ряду статистических прогонов с помощью ЭВМ.
В ходе процесса моделирования строятся последовательные сценарии с использованием исходных данных, которые являются неопределенными, и считаются случайными величинами.
Процесс анализа риска может быть разбит на следующие стадии:
- Разработка прогнозной модели;
- Определение вероятностного закона распределения случайных переменных;
- Установление границ диапазона значений переменных;
- Установление отношений коррелированных переменных;
- Генерирование случайных сценариев, основанных на наборе допущений (имитационные прогоны);
- Статистический анализ результатов имитации.
Прогнозная модель определяет математические отношения между числовыми переменными, которые относятся к прогнозу выбранного финансового показателя. В качестве базовой модели для анализа инвестиционного риска обычно используется модель расчета показателя NPV:
NPV = CF0 + + +…+ =
Окончательной стадией анализа рисков является обработка и интерпретация результатов.
Каждый прогон представляет вероятность события, равную p = 100 / n, где p - вероятность единичного прогона (%); n - размер выборки.
Как меру риска целесообразно использовать вероятность получения отрицательного значения NPV. Она оценивается как произведение количества результатов с отрицательным значением и вероятности единичного прогона. Например, если из 5 000 прогонов отрицательные значения NPV окажутся в 3 454 случаях, то мера риска составит 69.1%.