Смекни!
smekni.com

Разработка сенсора на поверхностно-акустических волнах. Автоматизация измерительной установки (стр. 1 из 9)

Министерство образования Российской Федерации

Нижегородский государственный технический университет

Дзержинский филиал

Факультет

Химико-механический

Кафедра

Автоматизация технологических процессов и производств

Магистерская диссертация

по теме:

Разработка сенсора на поверхностно-акустических волнах. Автоматизация измерительной установки.

Выполнил:

магистрант гр. 95-АТПМ-1

Ермаков Е. С.

Зав. кафедрой АТПП:

д.т.н., профессор

Сажин С.Г.

Научный руководитель:

д.т.н., профессор

Сажин С.Г.

г. Дзержинск

2001 г.

Содержание

Содержание..................................................................................................................................................... 2

Введение............................................................................................................................................................ 3

Литературный обзор............................................................................................................................... 5

Основные принципы конструирования ПАВ сенсоров................................................................ 5

Некоторые задачи, решаемые ПАВ сенсорами............................................................................ 11

Конструкция экспериментальной ячейки..................................................................... 18

Описание приборов и материалов.......................................................................................... 21

Сопряжение частотомера с ЭВМ................................................................................................ 35

Особенности задачи.................................................................................................................................. 35

Постановка задачи сопряжения......................................................................................................... 41

Преобразование уровня............................................................................................................................ 43

Преобразование кода................................................................................................................................ 44

Параллельные порты ввода/вывода.................................................................................................... 53

Прерывания................................................................................................................................................. 56

Последовательный порт ввода/вывода............................................................................................. 57

Разработка программного обеспечения устройства сопряжения.......... 64

Математическое моделирование........................................................................................... 70

Экспериментальные результаты............................................................................................ 78

Экономическая часть......................................................................................................................... 83

Техника безопасности....................................................................................................................... 84

Выводы.............................................................................................................................................................. 85

Список использованных источников................................................................................ 86

Введение

В условиях современности проблема контроля за состоянием окружающей среды выходит на все более ведущее место. Контроль этот осуществляется как стационарными приборами, так и портативными. К стационарным приборам можно отнести инфракрасные спектрометры, газовые хроматографы, массовые спектрометры и некоторые другие. Работа портативных приборов основана на использовании твердотельных преобразователей. Такие преобразователи позволяют осуществлять миниатюризацию приборов, снижать потребляемую ими мощность, а также дают возможность производить их с помощью технологии микроэлектроники, ну а это - качество, надежность и возможность создания многоточечных систем контроля. Разработка такого рода приборов является актуальной проблемой микроэлектроники и автоматики. [1].

Химический твердотельный сенсор представляет собой микроэлектронное устройство, которое преобразует изменение химических свойств среды или состава среды в электрический сигнал [2]. Одним из наиболее перспективных направлений в разработке химических сенсоров является создание устройств на поверхностно-акустических волнах (ПАВ). ПАВ устройства привлекательны для применения в качестве химических микросенсоров в силу своей чувствительности, малого размера и дешевизны изготовления на основе технологии микроэлектроники. Так же преимуществом ПАВ сенсоров является высокая чувствительность скорости распространения поверхностно-акустической волны к любым изменениям свойств поверхностного материала. Это объясняется тем, что чувствительность таких сенсоров растет пропорционально квадрату рабочей частоты прибора, а охватываемый диапазон рабочих частот изменяется от десятков мегагерц до нескольких гигагерц.

Необходимо отметить, что область применения ПАВ сенсоров достаточно широка и разнообразна. Эти приборы также нашли свое применение в качестве датчиков температуры и давления, а, кроме того, дают возможность проводить исследование свойств различных полимерных пленок.

Литературный обзор

Основные принципы конструирования ПАВ сенсоров

В своей основной форме химический микросенсор представляет собой по меньшей мере два элемента: миниатюрная подложка и химически селективное покрытие [10].

Подложка имеет контакт с покрытием и обеспечивает возникновение электрического сигнала, чьи характеристики отражают состояние покрытия.

Покрытие имеет контакт со средой, содержащей химическое вещество, которое должно быть обнаружено. Различия в свойствах покрытия, посредством которых происходят те или иные химические взаимодействия, обеспечивают перенос вещества или энергии через подложку [10].

Возникновение акустической волны достигается использованием ПАВ покрытия, линии задержки и колебательного контура.

При адсорбции чувствительным покрытием определяемых веществ происходит изменение характеристик поверхностно-акустической волны, таких как фазовая скорость, амплитуда и частота. Происходит это вследствие изменения упругих свойств чувствительного слоя и его электропроводности [1]. По этим изменениям можно судить о концентрации примеси в среде.


ПАВ микросенсор представляет собой тонкую пластинку из отполированного пьезоэлектрического материала (например, кварца, ниобата лития, танталата лития), на которую нанесены две системы встречно-штырьевых преобразователей (ВШП), одна из которых работает в качестве передающего преобразователя, а вторая является принимающим преобразователем [2]. Края на обоих концах пластинки искажаются или нагружаются абсорбционной резиной для подавления отражения в направлении распространения первичной волны. Если на одну из систем ВШП подается высокочастотное напряжение, то на поверхности пластинки за счет обратного пьезоэффекта генерируется поверхностно-акустическая волна. Эта волна затем распространяется вдоль поверхности пластинки до тех пор, пока не попадет на другую систему ВШП, где она преобразуется обратно в высокочастотное напряжение. Время задержки
между входным и выходным электрическими сигналами определяется по формуле:

,

где l - среднее расстояние между системами ВШП,

v - скорость распространения поверхностно-акустической волны.

Максимальное акустоэлектрическое взаимодействие систем ВШП имеет место при характеристической частоте

, определяемой следующим соотношением:

,

где h - шаг ВШП [З].

Соединение двух ВШП через высокочастотный усилитель (рис. 1) дает возможность данному устройству поддерживать колебательный процесс на резонансной частоте при условии выполнения следующих требований:

набег фаз в кольце получающегося таким образом колебательного контура составляет

, где n - целое число;

потери в линии задержки компенсируются усилителем [2].

Область распространения ПАВ между системами ВШП используется в сенсорных устройствах в качестве чувствительной области. Любое изменение физических параметров среды (температуры, давления) оказывает влияние на рабочую частоту ПАВ прибора. Это явление используется в данном типе датчиков в качестве сенсорного эффекта. В случае применении ПАВ приборов в качестве химических газовых сенсоров на область распространения поверхностно-акустической волны наносится чувствительное покрытие, обладающее свойством селективно взаимодействовать с определяемым веществом. Нанесение покрытия отражается в значительном ослаблении поверхностной волны и соответствующем уменьшении резонансной частоты прибора. Было показано [2] что изменение резонансной частоты, обусловленное наличием покрытия на поверхности распространения поверхностно-акустической волны, описывается следующим соотношением:

,

где

- сдвиг резонансной частоты за счет изменения чувствительным покрытием скорости поверхностно-акустической волны,

и
характеристики пьезоэлектрического материала,

- начальная резонансная частота,

h - толщина чувствительного покрытия,

- его плотность.